Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Más filtros

Base de datos
Intervalo de año de publicación
J Phycol ; 59(5): 1107-1111, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37578989


A cryptogenic, invasive-like red macroalga, Chondria tumulosa, was first observed in 2016 forming thick mats on the forereef of Manawai Atoll within Papahanaumokuakea Marine National Monument. Subsequent expeditions revealed an increased abundance of this alga. In 2021, unattached C. tumulosa was observed forming a network of dark, meandering accumulations throughout the atoll's inner lagoon. High-resolution satellite imagery revealed that these accumulations became visible in 2015 (length: ~0.74 km; area: ~0.88 km2 ) and increased 56-fold in length and 115-fold in area by 2021 (length: 41.32 km; area: 101.34 km2 ). An exponential expansion rate of ~16.02 km · y-1 (length), ~44.75 km2 · y-1 (area). This study presents the comprehensive temporal and spatial expansion of C. tumulosa accumulations for Manawai Atoll since its discovery, providing ecologist and resource managers with a proxy to gauge the overall abundance trend of this invasive-like alga.

Antozoos , Rhodophyta , Algas Marinas , Animales , Arrecifes de Coral
PLoS One ; 14(12): e0226370, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31851720


This study examined the effects of SCUBA bubbles on fish counts in underwater visual surveys conducted in the Papahanaumokuakea Marine National Monument (PMNM). Specifically, paired fish surveys were conducted at each survey site, utilizing two different gear types: open-circuit SCUBA (OC) and closed-circuit rebreather (CCR). Bubble exhaust released from the OC equipment is a potential source of bias for in-situ fish observations, as the associated audio and visual disturbances could either attract or repel fishes depending on whether their behavior is more driven by curiosity or caution. The study area, is a large (~1.5 million km2) and extremely remote marine protected area in which the response of coral reef fishes to divers represent natural behavior of naive fishes with little or no previous contact with humans. Historically, surveys conducted on OC in this area have shown an abundance of large roving piscivores and this study set out to determine the extant, if any, the audible and visual disturbances of OC bubbles have. The species typically seen in these prior surveys were Caranx ignobilis, Caranx melampygus, Aprion virescens, and a couple of species of sharks. We found differences in counts for some roving piscivores, including significantly more jacks observed on OC than CCR (Caranx ignobilis 57% more, and Caranx melampygus 113% more). Instance of first encounter, i.e. the time when a fish was first observed during a survey, also varied for some species. Higher numbers of Aprion virescens (p = 0.04), and C. melampygus (p = <0.001) were observed in the first 5-minutes of counts by divers on OC (i.e. when they were using breathing apparatus that produced noises that could be heard over long distances). Although not the focus of the study, we also assessed differences between OC and CCR counts for other groups of fishes. Estimated abundance of benthic damselfish was higher on OC than CCR, and counts of butterflyfish were lower on OC; but there were no significant differences for the other groups considered. This is an important control study that documents the natural responses of coral reef fishes to SCUBA bubbles generated by in-situ surveys.

Conservación de los Recursos Naturales , Buceo , Peces , Animales , Dinámica Poblacional
PLoS One ; 11(12): e0167724, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27936044


Visual survey by divers using open-circuit (OC) SCUBA is the most widely used approach to survey coral reef fishes. Therefore, it is important to quantify sources of bias in OC surveys, such as the possibility that avoidance of OC divers by fishes can lead to undercounting in areas where targeted species have come to associate divers with a risk of being speared. One potential way to reduce diver avoidance is to utilize closed circuit rebreathers (CCRs), which do not produce the noise and bubbles that are a major source of disturbance associated with OC diving. For this study, we conducted 66 paired OC and CCR fish surveys in the Main Hawaiian Islands at locations with relatively high, moderate, and light fishing pressure. We found no significant differences in biomass estimates between OC and CCR surveys when data were pooled across all sites, however there were differences at the most heavily fished location, Oahu. There, biomass estimates from OC divers were significantly lower for several targeted fish groups, including surgeonfishes, targeted wrasses, and snappers, as well as for all targeted fishes combined, with mean OC biomass between 32 and 68% of mean CCR biomass. There were no clear differences between OC and CCR biomass estimates for these groups at sites with moderate or low fishing pressure, or at any location for other targeted fish groups, including groupers, parrotfishes, and goatfishes. Bias associated with avoidance of OC divers at heavily fished locations could be substantially reduced, or at least calibrated for, by utilization of CCR. In addition to being affected by fishing pressure, the extent to which avoidance of OC divers is problematic for visual surveys varies greatly among taxa, and is likely to be highly influenced by the survey methodology and dimensions used.

Arrecifes de Coral , Peces/clasificación , Animales , Biomasa , Conservación de los Recursos Naturales , Buceo , Explotaciones Pesqueras , Hawaii , Encuestas y Cuestionarios