Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Más filtros

Base de datos
Intervalo de año de publicación
Ecol Evol ; 7(19): 7585-7598, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29043016


Dispersal is a driving factor in the creation and maintenance of biodiversity, yet little is known about the effects of habitat variation and geography on dispersal and population connectivity in most mammalian groups. Bats of the family Molossidae are fast-flying mammals thought to have potentially high dispersal ability, and recent studies have indicated gene flow across hundreds of kilometers in continental North American populations of the Brazilian free-tailed bat, Tadarida brasiliensis. We examined the population genetics, phylogeography, and morphology of this species in Florida and across islands of The Bahamas, which are part of an island archipelago in the West Indies. Previous studies indicate that bats in the family Phyllostomidae, which are possibly less mobile than members of the family Molossidae, exhibit population structuring across The Bahamas. We hypothesized that T. brasiliensis would show high population connectivity throughout the islands and that T. brasiliensis would show higher connectivity than two species of phyllostomid bats that have been previously examined in The Bahamas. Contrary to our predictions, T. brasiliensis shows high population structure between two groups of islands in The Bahamas, similar to the structure exhibited by one species of phyllostomid bat. Phylogenetic and morphological analyses suggest that this structure may be the result of ancient divergence between two populations of T. brasiliensis that subsequently came into contact in The Bahamas. Our findings additionally suggest that there may be cryptic species within T. brasiliensis in The Bahamas and the West Indies more broadly.

Ecol Evol ; 2(11): 2829-42, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23170217


Red colobus monkeys, due to their sensitivity to environmental change, are indicator species of the overall health of their tropical rainforest habitats. As a result of habitat loss and overhunting, they are among the most endangered primates in the world, with very few viable populations remaining. Traditionally, extant indicator species have been used to signify the conditions of their current habitats, but they have also been employed to track past environmental conditions by detecting previous population fluctuations. Kibale National Park (KNP) in Uganda harbors the only remaining unthreatened large population of red colobus. We used microsatellite DNA to evaluate the historical demography of these red colobus and, therefore, the long-term stability of their habitat. We find that the red colobus population throughout KNP has been stable for at least ∼40,000 years. We interpret this result as evidence of long-term forest stability because a change in the available habitat or population movement would have elicited a corresponding change in population size. We conclude that the forest of what is now Kibale National Park may have served as a Late Pleistocene refuge for many East African species.