Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 8: 16038, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737173

RESUMEN

Superposition of orbital eigenstates is crucial to quantum technology utilizing atoms, such as atomic clocks and quantum computers, and control over the interaction between atoms and their neighbours is an essential ingredient for both gating and readout. The simplest coherent wavefunction control uses a two-eigenstate admixture, but more control over the spatial distribution of the wavefunction can be obtained by increasing the number of states in the wavepacket. Here we demonstrate THz laser pulse control of Si:P orbitals using multiple orbital state admixtures, observing beat patterns produced by Zeeman splitting. The beats are an observable signature of the ability to control the path of the electron, which implies we can now control the strength and duration of the interaction of the atom with different neighbours. This could simplify surface code networks which require spatially controlled interaction between atoms, and we propose an architecture that might take advantage of this.

3.
Nat Commun ; 6: 6549, 2015 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-25790967

RESUMEN

The ability to control dynamics of quantum states by optical interference, and subsequent electrical read-out, is crucial for solid state quantum technologies. Ramsey interference has been successfully observed for spins in silicon and nitrogen vacancy centres in diamond, and for orbital motion in InAs quantum dots. Here we demonstrate terahertz optical excitation, manipulation and destruction via Ramsey interference of orbital wavepackets in Si:P with electrical read-out. We show milliradian control over the wavefunction phase for the two-level system formed by the 1s and 2p states. The results have been verified by all-optical echo detection methods, sensitive only to coherent excitations in the sample. The experiments open a route to exploitation of donors in silicon for atom trap physics, with concomitant potential for quantum computing schemes, which rely on orbital superpositions to, for example, gate the magnetic exchange interactions between impurities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...