Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 8: 13917, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067228

RESUMEN

The study of photoexcited strongly correlated materials is attracting growing interest since their rich phase diagram often translates into an equally rich out-of-equilibrium behaviour. With femtosecond optical pulses, electronic and lattice degrees of freedom can be transiently decoupled, giving the opportunity of stabilizing new states inaccessible by quasi-adiabatic pathways. Here we show that the prototype Mott-Hubbard material V2O3 presents a transient non-thermal phase developing immediately after ultrafast photoexcitation and lasting few picoseconds. For both the insulating and the metallic phase, the formation of the transient configuration is triggered by the excitation of electrons into the bonding a1g orbital, and is then stabilized by a lattice distortion characterized by a hardening of the A1g coherent phonon, in stark contrast with the softening observed upon heating. Our results show the importance of selective electron-lattice interplay for the ultrafast control of material parameters, and are relevant for the optical manipulation of strongly correlated systems.

3.
Phys Rev Lett ; 117(15): 156401, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27768359

RESUMEN

We report on time-resolved x-ray diffraction measurements following femtosecond laser excitation in pure bulk chromium. Comparing the evolution of incommensurate charge-density-wave (CDW) and atomic lattice reflections, we show that, a few nanoseconds after laser excitation, the CDW undergoes different structural changes than the atomic lattice. We give evidence for a transient CDW shear strain that breaks the lattice point symmetry. This strain is characteristic of sliding CDWs, as observed in other incommensurate CDW systems, suggesting the laser-induced CDW sliding capability in 3D systems. This first evidence opens perspectives for unconventional laser-assisted transport of correlated charges.

4.
Sci Rep ; 4: 4658, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24722395

RESUMEN

Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipation of spin angular momentum, ultrafast spin dependent transport of hot electrons has been pointed out as a potential candidate to explain ultrafast demagnetization without resorting to any spin dissipation channel. Here we use time resolved magneto-optical Kerr measurements to extract the influence of spin dependent transport on the demagnetization dynamics taking place in magnetic samples with alternating domains with opposite magnetization directions. We unambiguously show that whatever the sample magnetic configuration, the demagnetization takes place during the same time, demonstrating that hot electrons spin dependent transfer between neighboring domains does not alter the ultrafast magnetization dynamics in our systems with perpendicular anisotropy and 140 nm domain sizes.

5.
Phys Rev Lett ; 112(2): 026601, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484033

RESUMEN

We show experimental evidence of magnetization switching in a single (Ga,Mn)(As,P) semiconducting ferromagnetic layer, attributed to a strong reduction of the magnetization and the anisotropy due to current injection. The nucleation of magnetization reversal is found to occur even in the absence of a magnetic field and to be both anisotropic and stochastic. Our findings highlight a new mechanism of magnetization manipulation based on spin accumulation in a semiconductor material.

6.
Nat Commun ; 5: 3003, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24389793

RESUMEN

The advent of Dirac materials has made it possible to realize two-dimensional gases of relativistic fermions with unprecedented transport properties in condensed matter. Their photoconductive control with ultrafast light pulses is opening new perspectives for the transmission of current and information. Here we show that the interplay of surface and bulk transient carrier dynamics in a photoexcited topological insulator can control an essential parameter for photoconductivity-the balance between excess electrons and holes in the Dirac cone. This can result in a strongly out of equilibrium gas of hot relativistic fermions, characterized by a surprisingly long lifetime of more than 50 ps, and a simultaneous transient shift of chemical potential by as much as 100 meV. The unique properties of this transient Dirac cone make it possible to tune with ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that is impossible with conventional optoelectronic materials.

7.
Nano Lett ; 12(7): 3532-6, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22658088

RESUMEN

We discuss the ultrafast evolution of the surface electronic structure of the topological insulator Bi(2)Te(3) following a femtosecond laser excitation. Using time and angle-resolved photoelectron spectroscopy, we provide a direct real-time visualization of the transient carrier population of both the surface states and the bulk conduction band. We find that the thermalization of the surface states is initially determined by interband scattering from the bulk conduction band, lasting for about 0.5 ps; subsequently, few picoseconds are necessary for the Dirac cone nonequilibrium electrons to recover a Fermi-Dirac distribution, while their relaxation extends over more than 10 ps. The surface sensitivity of our measurements makes it possible to estimate the range of the bulk-surface interband scattering channel, indicating that the process is effective over a distance of 5 nm or less. This establishes a correlation between the nanoscale thickness of the bulk charge reservoir and the evolution of the ultrafast carrier dynamics in the surface Dirac cone.

8.
Phys Rev Lett ; 103(2): 028301, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19659251

RESUMEN

We investigate the out-of-equilibrium switching dynamics of a molecular Fe(III) spin-crossover solid triggered by a femtosecond laser flash. The time-resolved x-ray diffraction and optical results show that the dynamics span from subpicosecond local photoswitching followed by volume expansion (nanosecond) and thermal switching (microsecond). We present a physical picture of the consecutive steps in the photoswitching of molecular materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...