Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 17037, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426607

RESUMEN

Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom-the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text]-E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text]) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.

2.
Sci Rep ; 11(1): 924, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441595

RESUMEN

The temperature effect on the Raman scattering efficiency is investigated in [Formula: see text]-GaSe and [Formula: see text]-InSe crystals. We found that varying the temperature over a broad range from 5 to 350 K permits to achieve both the resonant conditions and the antiresonance behaviour in Raman scattering of the studied materials. The resonant conditions of Raman scattering are observed at about 270 K under the 1.96 eV excitation for GaSe due to the energy proximity of the optical band gap. In the case of InSe, the resonant Raman spectra are apparent at about 50 and 270 K under correspondingly the 2.41 eV and 2.54 eV excitations as a result of the energy proximity of the so-called B transition. Interestingly, the observed resonances for both materials are followed by an antiresonance behaviour noticeable at higher temperatures than the detected resonances. The significant variations of phonon-modes intensities can be explained in terms of electron-phonon coupling and quantum interference of contributions from different points of the Brillouin zone.

3.
Nat Commun ; 11(1): 4037, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788704

RESUMEN

Excitons with binding energies of a few hundreds of meV control the optical properties of transition metal dichalcogenide monolayers. Knowledge of the fine structure of these excitons is therefore essential to understand the optoelectronic properties of these 2D materials. Here we measure the exciton fine structure of MoS2 and MoSe2 monolayers encapsulated in boron nitride by magneto-photoluminescence spectroscopy in magnetic fields up to 30 T. The experiments performed in transverse magnetic field reveal a brightening of the spin-forbidden dark excitons in MoS2 monolayer: we find that the dark excitons appear at 14 meV below the bright ones. Measurements performed in tilted magnetic field provide a conceivable description of the neutral exciton fine structure. The experimental results are in agreement with a model taking into account the effect of the exchange interaction on both the bright and dark exciton states as well as the interaction with the magnetic field.

4.
Nanoscale ; 12(35): 18153-18159, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32853305

RESUMEN

Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2 encapsulated in hexagonal BN (hBN). We find that this system is an n-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be g ∼ -8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.

5.
Sci Rep ; 10(1): 4981, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188877

RESUMEN

Atomically thin materials, like semiconducting transition metal dichalcogenides (S-TMDs), are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. Photoluminescence and reflectance contrast techniques are employed to investigate the effect of metallic substrates on optical properties of MoSe2 monolayer (ML). The optical spectra of MoSe2 MLs deposited on Pt, Au, Mo and Zr have distinctive metal-related lineshapes. In particular, a substantial variation in the intensity ratio and the energy separation between a negative trion and a neutral exciton is observed. It is shown that using metals as substrates affects the doping of S-TMD MLs. The explanation of the effect involves the Schottky barrier formation at the interface between the MoSe2 ML and the metallic substrates. The alignment of energy levels at the metal/semiconductor junction allows for the transfer of charge carriers between them. We argue that a proper selection of metallic substrates can be a way to inject appropriate types of carriers into the respective bands of S-TMDs.

6.
Nanotechnology ; 31(13): 135002, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31825902

RESUMEN

At cryogenic temperatures, the photoluminescence (PL) spectrum of monolayer WSe2 features a number of lines related to the recombination of so-called localized excitons (LEs). The intensity of these lines strongly decreases with increasing temperature. In order to understand the mechanism behind this phenomenon we carried out a time-resolved experiment, which revealed a similar trend in the PL decay time. Our results identify the opening of additional non-radiative relaxation channels as a primary cause of the observed temperature quenching of the LEs' PL.


Asunto(s)
Calcógenos/química , Compuestos de Tungsteno/química , Mediciones Luminiscentes , Temperatura
7.
Phys Rev Lett ; 123(13): 136801, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31697524

RESUMEN

We demonstrate that, in monolayers (MLs) of semiconducting transition metal dichalcogenides, the s-type Rydberg series of excitonic states follows a simple energy ladder: ε_{n}=-Ry^{*}/(n+δ)^{2}, n=1,2,…, in which Ry^{*} is very close to the Rydberg energy scaled by the dielectric constant of the medium surrounding the ML and by the reduced effective electron-hole mass, whereas the ML polarizability is accounted for only by δ. This is justified by the analysis of experimental data on excitonic resonances, as extracted from magneto-optical measurements of a high-quality WSe_{2} ML encapsulated in hexagonal boron nitride (hBN), and well reproduced with an analytically solvable Schrödinger equation when approximating the electron-hole potential in the form of a modified Kratzer potential. Applying our convention to other MoSe_{2}, WS_{2}, MoS_{2} MLs encapsulated in hBN, we estimate an apparent magnitude of δ for each of the studied structures. Intriguingly, δ is found to be close to zero for WSe_{2} as well as for MoS_{2} monolayers, what implies that the energy ladder of excitonic states in these two-dimensional structures resembles that of Rydberg states of a three-dimensional hydrogen atom.

8.
Phys Rev Lett ; 123(9): 096803, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524465

RESUMEN

Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX_{2} (X being S or Se) spin forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe_{2} monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.

9.
Nat Commun ; 10(1): 2335, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133651

RESUMEN

The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe2/MoS2 type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe2 and MoS2, Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively.

10.
Sci Rep ; 8(1): 17745, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30531971

RESUMEN

We report a study of Raman scattering in few-layer MoTe2 focused on high-frequency out-of-plane vibrational modes near 291 cm-1 which are associated with the bulk-inactive [Formula: see text] mode. Our temperature-dependent measurements reveal a double peak structure of the feature related to these modes in the Raman scattering spectra of 4- and 5-layer MoTe2. In accordance with literature data, the doublet's lower- and higher-energy components are ascribed to the Raman-active A1g/[Formula: see text] vibrations involving, respectively, only the inner and surface layers. We demonstrate a strong enhancement of the inner mode's intensity at low temperature for 1.91 eV and 1.96 eV laser light excitation which suggests a resonant character of the Raman scattering processes probed under such conditions. A resonance of the laser light with a singularity of the electronic density of states at the M point of the MoTe2 Brillouin zone is proposed to be responsible for the observed effects.

11.
Nanotechnology ; 29(32): 325705, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29781447

RESUMEN

Embedding a WS2 monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS2 monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.

12.
Sci Rep ; 6: 39619, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008964

RESUMEN

The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.

13.
J Phys Condens Matter ; 28(36): 365301, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27391126

RESUMEN

We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T = 4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes + electron excitonic complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...