Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Más filtros

Base de datos
Intervalo de año de publicación
Phys Rev Lett ; 119(19): 193603, 2017 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-29219533


The microscopic theory of superconductivity raised the disruptive idea that electrons couple through the elusive exchange of virtual phonons, overcoming the strong Coulomb repulsion to form Cooper pairs. Light is also known to interact with atomic vibrations, as, for example, in the Raman effect. We show that photon pairs exchange virtual vibrations in transparent media, leading to an effective photon-photon interaction identical to that for electrons in the BCS theory of superconductivity, in spite of the fact that photons are bosons. In this scenario, photons may exchange energy without matching a quantum of vibration of the medium. As a result, pair correlations for photons scattered away from the Raman resonances are expected to be enhanced. An experimental demonstration of this effect is provided here by time-correlated Raman measurements in different media. The experimental data confirm our theoretical interpretation of a photonic Cooper pairing, without the need for any fitting parameters.

Opt Lett ; 37(2): 172-4, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22854457


In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single-photon to its polarization. Such a transfer of quantum information, which is completely reversible, has been implemented adopting an electrically tunable q-plate device and a Sagnac interferometer with a Dove prism. The adopted scheme exhibits high fidelity and low losses.