Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 125(21): 210505, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33274991

RESUMEN

We report long coherence times (up to 300 ms) for near-surface bismuth donor electron spins in silicon coupled to a superconducting microresonator, biased at a clock transition. This enables us to demonstrate the partial absorption of a train of weak microwave fields in the spin ensemble, their storage for 100 ms, and their retrieval, using a Hahn-echo-like protocol. Phase coherence and quantum statistics are preserved in the storage.

2.
Phys Rev Lett ; 124(6): 067701, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32109120

RESUMEN

Spins in silicon quantum devices are promising candidates for large-scale quantum computing. Gate-based sensing of spin qubits offers a compact and scalable readout with high fidelity, however, further improvements in sensitivity are required to meet the fidelity thresholds and measurement timescales needed for the implementation of fast feedback in error correction protocols. Here, we combine radio-frequency gate-based sensing at 622 MHz with a Josephson parametric amplifier, that operates in the 500-800 MHz band, to reduce the integration time required to read the state of a silicon double quantum dot formed in a nanowire transistor. Based on our achieved signal-to-noise ratio, we estimate that singlet-triplet single-shot readout with an average fidelity of 99.7% could be performed in 1 µs, well below the requirements for fault-tolerant readout and 30 times faster than without the Josephson parametric amplifier. Additionally, the Josephson parametric amplifier allows operation at a lower radio-frequency power while maintaining identical signal-to-noise ratio. We determine a noise temperature of 200 mK with a contribution from the Josephson parametric amplifier (25%), cryogenic amplifier (25%) and the resonator (50%), showing routes to further increase the readout speed.

3.
J Magn Reson ; 310: 106662, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31837553

RESUMEN

In EPR, spin relaxation is typically governed by interactions with the lattice or other spins. However, it has recently been shown that given a sufficiently strong spin-resonator coupling and high resonator quality factor, the spontaneous emission of microwave photons from the spins into the resonator can become the main relaxation mechanism, as predicted by Purcell. With increasing attention on the use of microresonators for EPR to achieve high spin-number sensitivity it is important to understand how this novel regime influences measured EPR signals, for example the amplitude and temporal shape of the spin-echo. We study this regime theoretically and experimentally, using donor spins in silicon, under different conditions of spin-linewidth and coupling homogeneity. When the spin-resonator coupling is distributed inhomogeneously, we find that the effective spin-echo relaxation time measured in a saturation recovery sequence strongly depends on the parameters for the detection echo. When the spin linewidth is larger than the resonator bandwidth, the different Fourier components of the spin echo relax with different characteristic times - due to the role of the resonator in driving relaxation - which results in the temporal shape of the echo becoming dependent on the repetition time of the experiment.

4.
Phys Rev Lett ; 120(16): 167701, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29756909

RESUMEN

We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ϵ|<10^{-5}. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning-shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10^{-6}-as well as opportunities for coupling to mechanical resonators.

5.
Nature ; 531(7592): 74-7, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26878235

RESUMEN

Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photon sources. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.

6.
Nat Nanotechnol ; 11(3): 253-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26657787

RESUMEN

The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science, from in vivo imaging to distance measurements in spin-labelled proteins. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improve the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. The detection volume of our resonator is ∼ 0.02 nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.


Asunto(s)
Amplificadores Electrónicos , Espectroscopía de Resonancia por Spin del Electrón/instrumentación , Espectroscopía de Resonancia por Spin del Electrón/métodos , Microquímica/instrumentación , Nanopartículas/análisis , Nanopartículas/química , Aire Acondicionado/instrumentación , Síndrome de Creutzfeldt-Jakob , Diseño de Equipo , Análisis de Falla de Equipo , Microondas , Miniaturización , Teoría Cuántica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Relación Señal-Ruido
7.
Nat Mater ; 14(5): 490-4, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25799326

RESUMEN

Electrical detection of spins is an essential tool for understanding the dynamics of spins, with applications ranging from optoelectronics and spintronics, to quantum information processing. For electron spins bound to donors in silicon, bulk electrically detected magnetic resonance has relied on coupling to spin readout partners such as paramagnetic defects or conduction electrons, which fundamentally limits spin coherence times. Here we demonstrate electrical detection of donor electron spin resonance in an ensemble by transport through a silicon device, using optically driven donor-bound exciton transitions. We measure electron spin Rabi oscillations, and obtain long electron spin coherence times, limited only by the donor concentration. We also experimentally address critical issues such as non-resonant excitation, strain, and electric fields, laying the foundations for realizing a single-spin readout method with relaxed magnetic field and temperature requirements compared with spin-dependent tunnelling, enabling donor-based technologies such as quantum sensing.

8.
Science ; 336(6086): 1280-3, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22679091

RESUMEN

A quantum computer requires systems that are isolated from their environment, but can be integrated into devices, and whose states can be measured with high accuracy. Nuclear spins in solids promise long coherence lifetimes, but they are difficult to initialize into known states and to detect with high sensitivity. We show how the distinctive optical properties of enriched (28)Si enable the use of hyperfine-resolved optical transitions, as previously applied to great effect for isolated atoms and ions in vacuum. Together with efficient Auger photoionization, these resolved hyperfine transitions permit rapid nuclear hyperpolarization and electrical spin-readout. We combine these techniques to detect nuclear magnetic resonance from dilute (31)P in the purest available sample of (28)Si, at concentrations inaccessible to conventional measurements, measuring a solid-state coherence time of over 180 seconds.

9.
Phys Rev Lett ; 106(20): 207601, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21668263

RESUMEN

We have measured the electrically detected magnetic resonance of donor-doped silicon field-effect transistors in resonant X- (9.7 GHz) and W-band (94 GHz) microwave cavities. The two-dimensional electron gas resonance signal increases by 2 orders of magnitude from X to W band, while the donor resonance signals are enhanced by over 1 order of magnitude. Bolometric effects and spin-dependent scattering are inconsistent with the observations. We propose that polarization transfer from the donor to the two-dimensional electron gas is the main mechanism giving rise to the spin resonance signals.

10.
Rev Sci Instrum ; 82(3): 034704, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21456773

RESUMEN

We describe a low-temperature sample probe for the electrical detection of magnetic resonance in a resonant W-band (94 GHz) microwave cavity. The advantages of this approach are demonstrated by experiments on silicon field-effect transistors. A comparison with conventional low-frequency measurements at X-band (9.7 GHz) on the same devices reveals an up to 100-fold enhancement of the signal intensity. In addition, resonance lines that are unresolved at X-band are clearly separated in the W-band measurements. Electrically detected magnetic resonance at high magnetic fields and high microwave frequencies is therefore a very sensitive technique for studying electron spins with an enhanced spectral resolution and sensitivity.

11.
Phys Rev Lett ; 104(20): 200501, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20867015

RESUMEN

Molecular nanostructures may constitute the fabric of future quantum technologies, if their degrees of freedom can be fully harnessed. Ideally one might use nuclear spins as low-decoherence qubits and optical excitations for fast controllable interactions. Here, we present a method for entangling two nuclear spins through their mutual coupling to a transient optically excited electron spin, and investigate its feasibility through density-functional theory and experiments on a test molecule. From our calculations we identify the specific molecular properties that permit high entangling power gates under simple optical and microwave pulses; synthesis of such molecules is possible with established techniques.

12.
Phys Rev Lett ; 105(14): 140501, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21230817

RESUMEN

Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many qubits could be encoded into spin waves of a single ensemble. We demonstrate the coupling of electron-spin ensembles to a superconducting transmission-line cavity at strengths greatly exceeding the cavity decay rates and comparable to the spin linewidths. We also perform broadband spectroscopy of ruby (Al2O3:Cr(3+)) at millikelvin temperatures and low powers, using an on-chip feedline. In addition, we observe hyperfine structure in diamond P1 centers.

13.
Phys Rev Lett ; 103(7): 070502, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19792625

RESUMEN

We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper pair box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...