Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Más filtros

Base de datos
Intervalo de año de publicación
Malar J ; 20(1): 32, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422080


BACKGROUND: Malaria remains highly endemic in Cameroon. The rapid emergence and spread of drug resistance was responsible for the change from monotherapies to artemisinin-based combinations. This systematic review and meta-analysis aimed to determine the prevalence and distribution of Plasmodium falciparum drug resistance markers within an evolving efficacy of anti-malarial drugs in Cameroon from January 1998 to August 2020. METHODS: The PRISMA-P and PRISMA statements were adopted in the inclusion of studies on single nucleotide polymorphisms (SNPs) of P. falciparum anti-malarial drug resistance genes (Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, Pfatp6, Pfcytb and Pfk13). The heterogeneity of the included studies was evaluated using the Cochran's Q and I2 statistics. The random effects model was used as standard in the determination of heterogeneity between studies. RESULTS: Out of the 902 records screened, 48 studies were included in this aggregated meta-analysis of molecular data. A total of 18,706 SNPs of the anti-malarial drug resistance genes were genotyped from 47,382 samples which yielded a pooled prevalence of 35.4% (95% CI 29.1-42.3%). Between 1998 and 2020, there was significant decline (P < 0.0001 for all) in key mutants including Pfcrt 76 T (79.9%-43.0%), Pfmdr1 86Y (82.7%-30.5%), Pfdhfr 51I (72.2%-66.9%), Pfdhfr 59R (76.5%-67.8%), Pfdhfr 108 N (80.8%-67.6%). The only exception was Pfdhps 437G which increased over time (30.4%-46.9%, P < 0.0001) and Pfdhps 540E that remained largely unchanged (0.0%-0.4%, P = 0.201). Exploring mutant haplotypes, the study observed a significant increase in the prevalence of Pfcrt CVIET mixed quintuple haplotype from 57.1% in 1998 to 57.9% in 2020 (P < 0.0001). In addition, within the same study period, there was no significant change in the triple Pfdhfr IRN mutant haplotype (66.2% to 67.3%, P = 0.427). The Pfk13 amino acid polymorphisms associated with artemisinin resistance were not detected. CONCLUSIONS: This review reported an overall decline in the prevalence of P. falciparum gene mutations conferring resistance to 4-aminoquinolines and amino alcohols for a period over two decades. Resistance to artemisinins measured by the presence of SNPs in the Pfk13 gene does not seem to be a problem in Cameroon. Systematic review registration PROSPERO CRD42020162620.

J Parasitol Res ; 2019: 1417967, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984417


Background: Despite recommendation from the World Health Organization that all malaria suspected patients undergo a parasitological confirmation using rapid diagnostic test or light microscopy prior to treatment, health facilities in remote malaria endemic settings sometimes resort to presumptive diagnosis of malaria for clinical management for various reasons. Following observation of this practice, we undertook a cross-sectional study aimed at comparing presumptive diagnosis based on axillary temperature, SD Bioline™ rapid test, and light microscopy as strategies for malaria diagnosis in the coastal region of Mutengene in the South West of Cameroon with the overall goal of supporting improved malaria diagnosis at local levels. Methodology: Venous blood from 320 participants was used to detect the presence of malaria parasite using SD Bioline™ mRDT and Giemsa stained microscopy or spotted on filter paper for PCR amplification of the 18s rRNA gene of Plasmodium sp following standard procedures. The axillary temperature of each participant was also measured. The sensitivity, specificity, and predictive values and their confidence intervals were determined for each of the methods with PCR as the reference. The area under the curve was used to estimate accuracy of diagnostic method and compared between test method using the X2 test with P<0.05 considered significant. Results: The overall diagnostic sensitivities of presumptive diagnosis using axillary temperature, light microscopy, and SD Bioline™ were observed to be 74.30% (95%CI: 67.90-80.01), 94.86% (95%CI: 90.99-97.41), and 95.33% (95%CI: 91.57-97.74), respectively, and their respective diagnostic specificities were 53.77% (95%CI: 43.82-63.51), 94.34% (95%CI: 88.09-97.87), and 94.34%(95%CI: 88.09-97.89). SD Bioline™ had a diagnostic sensitivity of 91.80% [95%CI: 81.90-97.28] at a parasitaemia of less than 500 parasites/µl of blood but a sensitivity of 100% for parasite counts above 500 parasites/µl of blood. The predictive values of the positive test were highly comparable between light microscopy (90.09%, [95%CI: 83.61-94.18]) and SD Bioline™ mRDT (90.91%, [95%CI: 84.50-94.83]), P=0.98 with kappa values of 0.898 but lower for presumptive diagnosis (50.89%, [95%CI: 43.72-58.03]), P<0.0001, and kappa value of 0.277. Perfect agreement was observed between SD Bioline™ mRDT and light microscopy (Cohen kappa= 0.924). Conclusions: The study showed that SD Bioline™ was as good as light microscopy in the diagnosis of malaria in remote areas of perennial transmission in South West Cameroon. This study equally revealed the limitations of presumptive diagnosis of malaria (as opposed to the use of RDTs or microscopy). Efforts should be made in such areas to promote parasitological confirmation of malaria using quality assured rapid tests or light microscopy for case management of malaria. The presence of nonnegligible levels of Plasmodium ovale in this study area indicate that treatment guidelines may require revision if same trend is proven in several other areas of same ecology.

Malar Res Treat ; 2018: 7071383, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854394


Background: As a result of the spread of parasites resistant to antimalarial drugs, Malaria treatment guidelines in Cameroon evolved from nonartemisinin monotherapy to artemisinin-based combination therapy. The aim of this study was to assess the effect of these therapy changes on the prevalence of molecular markers of resistance from 2003 to 2013 in Mutengene, Cameroon. Methodology: Dry blood samples (collected in 2003-2005 and 2009-2013) were used for parasite DNA extraction. Drug resistance genes were amplified by PCR and hybridized with oligonucleotide probes or subjected to restriction digestion. The prevalence of individual marker polymorphisms and haplotypes was compared in these two study periods using the Chi square test. Results: Alleles conferring resistance to 4-aminoquinolines in the Pfcrt 76T and Pfmdr1 86Y, 184F, and 1246Y genotypes showed a significant reduction of 97.0% to 66.9%, 83.6% to 45.2%, 97.3% to 56.0%, and 3.1% to 0.0%, respectively (P < 0.05). No difference was observed in SNPs associated with antifolate drugs resistance 51I, 59R, 108N, or 540E (P > 0.05). Haplotype analysis in the Pfmdr1 gene showed a reduction in the YFD from 75.90% to 42.2%, P < 0.0001, and an increase in the NYD (2.9% to 30.1%; P < 0.0001). Conclusions: The results indicated a gradual return of the 4-aminoquinoline sensitive genotype while the antifolate resistant genotypes increased to saturation.

Malar J ; 14: 27, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25626448


BACKGROUND: Artemether-lumefantrine and artesunate-amodiaquine are first-line treatment for uncomplicated malaria in Cameroon. No study has yet compared the efficacy of these drugs following the WHO recommended 42-day follow-up period. The goal of this study was to compare the clinical efficacy, tolerability and safety of artesunate-amodiaquine (ASAQ), artemether-lumefantrine (AL) and dihydroartemisinin piperaquine (DHAP) among children aged less than ten years in two malaria-endemic ecological regions of Cameroon. METHODS: A three-arm, randomized, controlled, non-inferiority trial was conducted among children of either gender aged six months (>5 kg) to ten years (n = 720) with acute uncomplicated Plasmodium falciparum infection. Parents/guardians of children provided consent prior to randomization to receive ASAQ, DHAP or AL in the ratio of 2:2:1, respectively. Treatment outcome was assessed based on standard WHO 2003 classification after 42 days of follow-up. The primary outcome was PCR-corrected day-42 cure rates. The non-inferiority, one-sided, lower limit asymptotic 97.5% confidence interval (CI) on the difference in PCR-corrected cure rates of ASAQ and DHAP when compared to AL was accepted if the lower limit of the CI was greater than -10%. Secondary outcomes were parasite and fever clearances and day 7 haemoglobin changes. RESULTS: PCR-corrected PP cure rates of 96.7, 98.1 and 96.3, respectively, for AL, ASAQ and DHAP was observed. The lower bound of the one-sided 97.5% CI calculated around the difference between day-42 cure rate point estimates in AL and ASAQ groups, AL and DHAP groups were, -6% and -4% respectively. There were no statistical significant differences in parasite or fever clearance times between treatments, although fever clearance pattern was different between ASAQ and DHAP. No statistical significant differences were observed in the occurrence of adverse events among treatment groups. CONCLUSION: ASAQ and DHAP are considered safe and tolerable and are not inferior to AL in the treatment of uncomplicated P. falciparum malaria in Cameroonian children. TRIAL REGISTRATION: NCT01845701.

Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Quinolinas/uso terapéutico , Amodiaquina/efectos adversos , Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina , Artemisininas/efectos adversos , Camerún , Niño , Preescolar , Combinación de Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Etanolaminas/efectos adversos , Fluorenos/efectos adversos , Humanos , Lactante , Masculino , Quinolinas/efectos adversos , Resultado del Tratamiento