Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625060

RESUMEN

High-elevation arid regions harbor microbial communities reliant on metabolic niches and flexibility to survive under biologically stressful conditions, including nutrient limitation that necessitates the utilization of atmospheric trace gases as electron donors. Geothermal springs present "oases" of microbial activity, diversity, and abundance by delivering water and substrates, including reduced gases. However, it is unknown whether these springs exhibit a gradient of effects, increasing the spatial reach of their impact on trace gas-oxidizing microbes in the surrounding soils. This study assessed whether proximity to Polloquere, a high-altitude geothermal spring in an Andean salt flat, alters the diversity and metabolic structure of nearby soil bacterial populations compared to the surrounding cold desert. Recovered DNA quantities and metagenomic analyses indicate that the spring represents an oasis for microbes in this challenging environment, supporting greater biomass with more diverse metabolic functions in proximal soils that declines sharply with radial distance from the spring. Despite the sharp decrease in biomass, potential rates of atmospheric hydrogen (H2) and carbon monoxide (CO) uptake increase away from the spring. Kinetic estimates suggest that this activity is due to high-affinity trace gas consumption, likely as a survival strategy for energy and/or carbon acquisition. These results demonstrate that Polloquere regulates a gradient of diverse microbial communities and metabolisms, culminating in increased activity of trace gas-oxidizers as the influence of the spring yields to that of the regional salt flat environment. This suggests that the spring holds local importance within the context of the broader salt flat and potentially represents a model ecosystem for other geothermal systems in high-altitude desert environments.

2.
Nat Commun ; 14(1): 6163, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789019

RESUMEN

Investigations of abiotic and biotic contributions to dissolved organic carbon (DOC) are required to constrain microbial habitability in continental subsurface fluids. Here we investigate a large (101-283 mg C/L) DOC pool in an ancient (>1Ga), high temperature (45-55 °C), low biomass (102-104 cells/mL), and deep (3.2 km) brine from an uranium-enriched South African gold mine. Excitation-emission matrices (EEMs), negative electrospray ionization (-ESI) 21 tesla Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), and amino acid analyses suggest the brine DOC is primarily radiolytically oxidized kerogen-rich shales or reefs, methane and ethane, with trace amounts of C3-C6 hydrocarbons and organic sulfides. δ2H and δ13C of C1-C3 hydrocarbons are consistent with abiotic origins. These findings suggest water-rock processes control redox and C cycling, helping support a meagre, slow biosphere over geologic time. A radiolytic-driven, habitable brine may signal similar settings are good targets in the search for life beyond Earth.

3.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35722720

RESUMEN

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Asunto(s)
Microbiota , Hielos Perennes , Regiones Árticas , Retroalimentación , Hielos Perennes/química , Filogenia , Suelo/química
4.
Astrobiology ; 22(S1): S186-S216, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35653292

RESUMEN

The Committee on Space Research (COSPAR) Sample Safety Assessment Framework (SSAF) has been developed by a COSPAR appointed Working Group. The objective of the sample safety assessment would be to evaluate whether samples returned from Mars could be harmful for Earth's systems (e.g., environment, biosphere, geochemical cycles). During the Working Group's deliberations, it became clear that a comprehensive assessment to predict the effects of introducing life in new environments or ecologies is difficult and practically impossible, even for terrestrial life and certainly more so for unknown extraterrestrial life. To manage expectations, the scope of the SSAF was adjusted to evaluate only whether the presence of martian life can be excluded in samples returned from Mars. If the presence of martian life cannot be excluded, a Hold & Critical Review must be established to evaluate the risk management measures and decide on the next steps. The SSAF starts from a positive hypothesis (there is martian life in the samples), which is complementary to the null-hypothesis (there is no martian life in the samples) typically used for science. Testing the positive hypothesis includes four elements: (1) Bayesian statistics, (2) subsampling strategy, (3) test sequence, and (4) decision criteria. The test sequence capability covers self-replicating and non-self-replicating biology and biologically active molecules. Most of the investigations associated with the SSAF would need to be carried out within biological containment. The SSAF is described in sufficient detail to support planning activities for a Sample Receiving Facility (SRF) and for preparing science announcements, while at the same time acknowledging that further work is required before a detailed Sample Safety Assessment Protocol (SSAP) can be developed. The three major open issues to be addressed to optimize and implement the SSAF are (1) setting a value for the level of assurance to effectively exclude the presence of martian life in the samples, (2) carrying out an analogue test program, and (3) acquiring relevant contamination knowledge from all Mars Sample Return (MSR) flight and ground elements. Although the SSAF was developed specifically for assessing samples from Mars in the context of the currently planned NASA-ESA MSR Campaign, this framework and the basic safety approach are applicable to any other Mars sample return mission concept, with minor adjustments in the execution part related to the specific nature of the samples to be returned. The SSAF is also considered a sound basis for other COSPAR Planetary Protection Category V, restricted Earth return missions beyond Mars. It is anticipated that the SSAF will be subject to future review by the various MSR stakeholders.


Asunto(s)
Marte , Vuelo Espacial , Teorema de Bayes , Medio Ambiente Extraterrestre , Investigación Espacial
5.
Microbiol Resour Announc ; 11(6): e0020122, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575557

RESUMEN

Ten distinct isolates from the genus Pseudomonas were isolated in culture. The genomes of these isolates were sequenced using the Illumina MiSeq platform and assembled in order to provide insight into the metabolic and carbon-degrading potential of bacteria residing in soils at high latitudes.

6.
Microb Ecol ; 84(1): 182-197, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34406445

RESUMEN

Keystone species or ecological engineers are vital to the health of an ecosystem; however, often, their low abundance or biomass present challenges for their discovery, identification, visualization and selection. We report the development of fluorescent in situ hybridization of transcript-annealing molecular beacons (FISH-TAMB), a fixation-free protocol that is applicable to archaea and bacteria. The FISH-TAMB method differs from existing FISH methods by the absence of fixatives or surfactants in buffers, the fast hybridization time of as short as 15 min at target cells' growth temperature, and the omission of washing steps. Polyarginine cell-penetrating peptides are employed to deliver molecular beacons (MBs) across prokaryotic cell walls and membranes, fluorescently labeling cells when MBs hybridize to target mRNA sequences. Here, the detailed protocol of the preparation and application of FISH-TAMB is presented. To demonstrate FISH-TAMB's ability to label intracellular mRNA targets, differentiate transcriptional states, detect active and rare taxa, and keep cell viability, labeling experiments were performed that targeted the messenger RNA (mRNA) of methyl-coenzyme M reductase A (mcrA) expressed in (1) Escherichia coli containing a plasmid with a partial mcrA gene of the methanogen Methanosarcina barkeri (E. coli mcrA+); (2) M. barkeri; and (3) an anaerobic methanotrophic (ANME) enrichment from a deep continental borehole. Although FISH-TAMB was initially envisioned for mRNA of any functional gene of interest without a requirement of prior knowledge of 16S ribosomal RNA (rRNA)-based taxonomy, FISH-TAMB has the potential for multiplexing and going beyond mRNA and thus is a versatile addition to the molecular ecologist's toolkit, with potentially widespread application in the field of environmental microbiology.


Asunto(s)
Metano , Microbiota , Archaea , ADN de Archaea/genética , Escherichia coli/genética , Hibridación Fluorescente in Situ/métodos , Metano/metabolismo , Oxidorreductasas/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo
7.
Environ Sci Technol ; 55(18): 12683-12693, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34472853

RESUMEN

Approximately 87% of the Arctic consists of low-organic carbon mineral soil, but knowledge of microbial activity in low-carbon permafrost (PF) and active layer soils remains limited. This study investigated the taxonomic composition and genetic potential of microbial communities at contrasting depths of the active layer (5, 35, and 65 cm below surface, bls) and PF (80 cm bls). We showed microbial communities in PF to be taxonomically and functionally different from those in the active layer. 16S rRNA gene sequence analysis revealed higher biodiversity in the active layer than in PF, and biodiversity decreased significantly with depth. The reconstructed 91 metagenome-assembled genomes showed that PF was dominated by heterotrophic, fermenting Bacteroidota using nitrite as their main electron acceptor. Prevalent microbes identified in the active layer belonged to bacterial taxa, gaining energy via aerobic respiration. Gene abundance in metagenomes revealed enrichment of genes encoding the plant-derived polysaccharide degradation and metabolism of nitrate and sulfate in PF, whereas genes encoding methane/ammonia oxidation, cold-shock protein, and two-component systems were generally more abundant in the active layer, particularly at 5 cm bls. The results of this study deepen our understanding of the low-carbon Arctic soil microbiome and improve prediction of the impacts of thawing PF.


Asunto(s)
Hielos Perennes , Regiones Árticas , Canadá , Carbono , Metagenómica , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo
8.
Appl Environ Microbiol ; 87(19): e0097221, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34288700

RESUMEN

Permafrost microbes may be metabolically active in microscopic layers of liquid brines, even in ancient soil. Metagenomics can help discern whether permafrost microbes show adaptations to this environment. Thirty-three metagenome-assembled genomes (MAGs) were obtained from six depths (3.5 m to 20 m) of freshly cored permafrost from the Siberian Kolyma-Indigirka Lowland region. These soils have been continuously frozen for ∼20,000 to 1,000,000 years. Eight of these MAGs were ≥80% complete with <10% contamination and were taxonomically identified as Aminicenantes, Atribacteria, Chloroflexi, and Actinobacteria within bacteria and Thermoprofundales within archaea. MAGs from these taxa have been obtained previously from nonpermafrost environments and have been suggested to show adaptations to long-term energy starvation, but they have never been explored in ancient permafrost. The permafrost MAGs had greater proportions in the Clusters of Orthologous Groups (COGs) categories of energy production and conversion and carbohydrate transport and metabolism than did their nonpermafrost counterparts. They also contained genes for trehalose synthesis, thymine metabolism, mevalonate biosynthesis, and cellulose degradation, which were less prevalent in nonpermafrost genomes. Many of these genes are involved in membrane stabilization and osmotic stress responses, consistent with adaptation to the anoxic, high-ionic-strength, cold environments of permafrost brine films. Our results suggest that this ancient permafrost contains DNA of high enough quality to assemble MAGs from microorganisms with adaptations to survive long-term freezing in this extreme environment. IMPORTANCE Permafrost around the world is thawing rapidly. Many scientists from a variety of disciplines have shown the importance of understanding what will happen to our ecosystem, commerce, and climate when permafrost thaws. The fate of permafrost microorganisms is connected to these predicted rapid environmental changes. Studying ancient permafrost with culture-independent techniques can give a glimpse into how these microorganisms function under these extreme low-temperature and low-energy conditions. This will facilitate understanding how they will change with the environment. This study presents genomic data from this unique environment ∼20,000 to 1,000,000 years of age.


Asunto(s)
Metagenoma , Hielos Perennes/microbiología , Adaptación Fisiológica , Siberia
9.
FEMS Microbiol Ecol ; 97(9)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34323966

RESUMEN

Long-term survivability is well-known for microorganisms in nutrient-depleted environments, but the damage accrued by proteins and the associated repair processes during the starvation and recovery phase of microbial life still remain enigmatic. We focused on aspartic acid (Asp) racemization and repair in the survival of Pyrococcus furiosus and Thermococcus litoralis under starvation conditions at high temperature. Despite the dramatic decrease of viability over time, 0.002% of P. furiosus cells (2.1×103 cells/mL) and 0.23% of T. litoralis cells (2.3×105 cells/mL) remained viable after 25 and 50 days, respectively. The D/L Asp ratio in the starved cells was approximately half of those from the autoclaved cells, suggesting that the starving cells were capable of partially repairing racemized Asp. Transcriptomic analyses of the recovered cells of T. litoralis indicated that the gene encoding Protein-L-isoaspartate (D-aspartate) O-methyltransferase (PIMT) might be involved in the repair of damaged proteins by converting D-Asp back to L-Asp during the resuscitation of starved cells. Collectively, our results provided evidence that Asp underwent racemization in the surviving hyperthermophilic cells under starved conditions and PIMT played a critical role in the repair of abnormal aspartyl residues during the initial recovery of starved, yet still viable, cells.


Asunto(s)
Ácido Aspártico , Proteína D-Aspartato-L-Isoaspartato Metiltransferasa , Temperatura
10.
Sci Rep ; 11(1): 12336, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117335

RESUMEN

Observations of trace methane (CH4) in the Martian atmosphere are significant to the astrobiology community given the overwhelming contribution of biological methanogenesis to atmospheric CH4 on Earth. Previous studies have shown that methanogenic Archaea can generate CH4 when incubated with perchlorates, highly oxidizing chaotropic salts which have been found across the Martian surface. However, the regulatory mechanisms behind this remain completely unexplored. In this study we performed comparative transcriptomics on the methanogen Methanosarcina barkeri, which was incubated at 30˚C and 0˚C with 10-20 mM calcium-, magnesium-, or sodium perchlorate. Consistent with prior studies, we observed decreased CH4 production and apparent perchlorate reduction, with the latter process proceeding by heretofore essentially unknown mechanisms. Transcriptomic responses of M. barkeri to perchlorates include up-regulation of osmoprotectant transporters and selection against redox-sensitive amino acids. Increased expression of methylamine methanogenesis genes suggest competition for H2 with perchlorate reduction, which we propose is catalyzed by up-regulated molybdenum-containing enzymes and maintained by siphoning diffused H2 from energy-conserving hydrogenases. Methanogenesis regulatory patterns suggest Mars' freezing temperatures alone pose greater constraints to CH4 production than perchlorates. These findings increase our understanding of methanogen survival in extreme environments and confers continued consideration of a potential biological contribution to Martian CH4.

11.
Microbiome ; 9(1): 110, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001281

RESUMEN

BACKGROUND: Total DNA (intracellular, iDNA and extracellular, eDNA) from ancient permafrost records the mixed genetic repository of the past and present microbial populations through geological time. Given the exceptional preservation of eDNA under perennial frozen conditions, typical metagenomic sequencing of total DNA precludes the discrimination between fossil and living microorganisms in ancient cryogenic environments. DNA repair protocols were combined with high throughput sequencing (HTS) of separate iDNA and eDNA fraction to reconstruct metagenome-assembled genomes (MAGs) from ancient microbial DNA entrapped in Siberian coastal permafrost. RESULTS: Despite the severe DNA damage in ancient permafrost, the coupling of DNA repair and HTS resulted in a total of 52 MAGs from sediments across a chronosequence (26-120 kyr). These MAGs were compared with those derived from the same samples but without utilizing DNA repair protocols. The MAGs from the youngest stratum showed minimal DNA damage and thus likely originated from viable, active microbial species. Many MAGs from the older and deeper sediment appear related to past aerobic microbial populations that had died upon freezing. MAGs from anaerobic lineages, including Asgard archaea, however exhibited minimal DNA damage and likely represent extant living microorganisms that have become adapted to the cryogenic and anoxic environments. The integration of aspartic acid racemization modeling and metaproteomics further constrained the metabolic status of the living microbial populations. Collectively, combining DNA repair protocols with HTS unveiled the adaptive strategies of microbes to long-term survivability in ancient permafrost. CONCLUSIONS: Our results indicated that coupling of DNA repair protocols with simultaneous sequencing of iDNA and eDNA fractions enabled the assembly of MAGs from past and living microorganisms in ancient permafrost. The genomic reconstruction from the past and extant microbial populations expanded our understanding about the microbial successions and biogeochemical alterations from the past paleoenvironment to the present-day frozen state. Furthermore, we provided genomic insights into long-term survival mechanisms of microorganisms under cryogenic conditions through geological time. The combined strategies in this study can be extrapolated to examine other ancient non-permafrost environments and constrain the search for past and extant extraterrestrial life in permafrost and ice deposits on Mars. Video abstract.


Asunto(s)
Hielos Perennes , Archaea/genética , Fósiles , Metagenoma , Metagenómica
12.
Front Microbiol ; 12: 757812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185810

RESUMEN

The active layer of permafrost in Ny Ålesund, Svalbard (79°N) around the Bayelva River in the Leirhaugen glacier moraine is measured as a small net carbon sink at the brink of becoming a carbon source. In many permafrost-dominating ecosystems, microbes in the active layers have been shown to drive organic matter degradation and greenhouse gas production, creating positive feedback on climate change. However, the microbial metabolisms linking the environmental geochemical processes and the populations that perform them have not been fully characterized. In this paper, we present geochemical, enzymatic, and isotopic data paired with 10 Pseudomonas sp. cultures and metagenomic libraries of two active layer soil cores (BPF1 and BPF2) from Ny Ålesund, Svalbard, (79°N). Relative to BPF1, BPF2 had statistically higher C/N ratios (15 ± 1 for BPF1 vs. 29 ± 10 for BPF2; n = 30, p < 10-5), statistically lower organic carbon (2% ± 0.6% for BPF1 vs. 1.6% ± 0.4% for BPF2, p < 0.02), statistically lower nitrogen (0.1% ± 0.03% for BPF1 vs. 0.07% ± 0.02% for BPF2, p < 10-6). The d13C values for inorganic carbon did not correlate with those of organic carbon in BPF2, suggesting lower heterotrophic respiration. An increase in the δ13C of inorganic carbon with depth either reflects an autotrophic signal or mixing between a heterotrophic source at the surface and a lithotrophic source at depth. Potential enzyme activity of xylosidase and N-acetyl-ß-D-glucosaminidase increases twofold at 15°C, relative to 25°C, indicating cold adaptation in the cultures and bulk soil. Potential enzyme activity of leucine aminopeptidase across soils and cultures was two orders of magnitude higher than other tested enzymes, implying that organisms use leucine as a nitrogen and carbon source in this nutrient-limited environment. Besides demonstrating large variability in carbon compositions of permafrost active layer soils only ∼84 m apart, results suggest that the Svalbard active layer microbes are often limited by organic carbon or nitrogen availability and have adaptations to the current environment, and metabolic flexibility to adapt to the warming climate.

13.
Front Microbiol ; 11: 1848, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013724

RESUMEN

Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.

14.
Microbiol Resour Announc ; 9(21)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32439668

RESUMEN

The role of archaeal ammonia oxidizers often exceeds that of bacterial ammonia oxidizers in marine and terrestrial environments but has been understudied in permafrost, where thawing has the potential to release ammonia. Here, three thaumarchaea genomes were assembled and annotated from metagenomic data sets from carbon-poor Canadian High Arctic active-layer cryosols.

15.
Environ Microbiome ; 15(1): 8, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33902738

RESUMEN

BACKGROUND: Exceptional preservation of endogenous organics such as collagens and blood vessels has been frequently reported in Mesozoic dinosaur fossils. The persistence of these soft tissues in Mesozoic fossil bones has been challenged because of the susceptibility of proteins to degradation and because bone porosity allows microorganisms to colonize the inner microenvironments through geological time. Although protein lability has been studied extensively, the genomic diversity of microbiomes in dinosaur fossil bones and their potential roles in bone taphonomy remain underexplored. Genome-resolved metagenomics was performed, therefore, on the microbiomes recovered from a Late Cretaceous Centrosaurus bone and its encompassing mudstone in order to provide insight into the genomic potential for microbial alteration of fossil bone. RESULTS: Co-assembly and binning of metagenomic reads resulted in a total of 46 high-quality metagenome-assembled genomes (MAGs) affiliated to six bacterial phyla (Actinobacteria, Proteobacteria, Nitrospira, Acidobacteria, Gemmatimonadetes and Chloroflexi) and 1 archaeal phylum (Thaumarchaeota). The majority of the MAGs represented uncultivated, novel microbial lineages from class to species levels based on phylogenetics, phylogenomics and average amino acid identity. Several MAGs from the classes Nitriliruptoria, Deltaproteobacteria and Betaproteobacteria were highly enriched in the bone relative to the adjacent mudstone. Annotation of the MAGs revealed that the distinct putative metabolic functions of different taxonomic groups were linked to carbon, nitrogen, sulfur and iron metabolism. Metaproteomics revealed gene expression from many of the MAGs, but no endogenous collagen peptides were identified in the bone that could have been derived from the dinosaur. Estimated in situ replication rates among the bacterial MAGs suggested that most of the microbial populations in the bone might have been actively growing but at a slow rate. CONCLUSIONS: Our results indicate that excavated dinosaur bones are habitats for microorganisms including novel microbial lineages. The distinctive microhabitats and geochemistry of fossil bone interiors compared to that of the external sediment enrich a microbial biomass comprised of various novel taxa that harbor multiple gene sets related to interconnected biogeochemical processes. Therefore, the presence of these microbiomes in Mesozoic dinosaur fossils urges extra caution to be taken in the science of paleontology when hunting for endogenous biomolecules preserved from deep time.

16.
Microbiol Resour Announc ; 8(46)2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727712

RESUMEN

Metagenomic sequencing of active-layer cryosols from the Canadian High Arctic has yielded a nearly complete genome for an atmospheric CH4-oxidizing bacterium belonging to upland soil cluster α (USCα). This genome contains genes involved in CH4 metabolism, H2 metabolism, and multiple carbon assimilation pathways.

17.
Nat Commun ; 10(1): 5268, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31754114

RESUMEN

The nematode Halicephalobus mephisto was originally discovered inhabiting a deep terrestrial aquifer 1.3 km underground. H. mephisto can thrive under conditions of abiotic stress including heat and minimal oxygen, where it feeds on a community of both chemolithotrophic and heterotrophic prokaryotes in an unusual ecosystem isolated from the surface biosphere. Here we report the comprehensive genome and transcriptome of this organism, identifying a signature of adaptation: an expanded repertoire of 70 kilodalton heat-shock proteins (Hsp70) and avrRpt2 induced gene 1 (AIG1) proteins. The expanded Hsp70 genes are transcriptionally induced upon growth under heat stress, and we find that positive selection is detectable in several members of this family. We further show that AIG1 may have been acquired by horizontal gene transfer (HGT) from a rhizobial fungus. Over one-third of the genes of H. mephisto are novel, highlighting the divergence of this nematode from other sequenced organisms. This work sheds light on the genomic basis of heat tolerance in a complete subterrestrial eukaryotic genome.


Asunto(s)
Adaptación Fisiológica/genética , Genoma de los Helmintos/genética , Respuesta al Choque Térmico , Nematodos/genética , Animales , Ecosistema , Regulación de la Expresión Génica , Ontología de Genes , Transferencia de Gen Horizontal , Proteínas HSP70 de Choque Térmico/genética , Proteínas del Helminto/genética , Nematodos/clasificación , Filogenia , Suelo/parasitología , Estrés Fisiológico , Transcriptoma
18.
Front Microbiol ; 10: 2224, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31611860

RESUMEN

Deep fractured rock ecosystems across most of North America have not been studied extensively. However, the US Great Basin, in particular the Nevada National Security Site (NNSS, formerly the Nevada Test Site), has hosted a number of influential subsurface investigations over the years. This investigation focuses on resident microbiota recovered from a hydrogeologically confined aquifer in fractured Paleozoic carbonate rocks at 863 - 923 meters below land surface. Analysis of the microorganisms living in this oligotrophic environment provides a perspective into microbial metabolic strategies required to endure prolonged hydrogeological isolation deep underground. Here we present a microbiological and physicochemical characterization of a deep continental carbonate ecosystem and describe a bacterial genus isolated from the ecosystem. Strain DRI-13T is a strictly anaerobic, moderately thermophilic, fumarate-respiring member of the phylum Firmicutes. This bacterium grows optimally at 55°C and pH 8.0, can tolerate a concentration of 100 mM NaCl, and appears to obligately metabolize fumarate to acetate and succinate. Culture-independent 16S rRNA gene sequencing indicates a global subsurface distribution, while the closest cultured relatives of DRI-13T are Pelotomaculum thermopropionicum (90.0% similarity) and Desulfotomaculum gibsoniae (88.0% similarity). The predominant fatty acid profile is iso-C15 : 0, C15 : 0, C16 : 0 and C14 : 0. The percentage of the straight-chain fatty acid C15 : 0 is a defining characteristic not present in the other closely related species. The genome is estimated to be 3,649,665 bp, composed of 87.3% coding regions with an overall average of 45.1% G + C content. Strain DRI-13T represents a novel genus of subsurface bacterium isolated from a previously uncharacterized rock-hosted geothermal habitat. The characterization of the bacterium combined with the sequenced genome provides insights into metabolism strategies of the deep subsurface biosphere. Based on our characterization analysis we propose the name Thermoanaerosceptrum fracticalcis (DRI-13T = DSM 100382T = ATCC TSD-12T).

19.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31437264

RESUMEN

Certain microorganisms survive long periods of time as endospores to cope with adverse conditions. Since endospores are metabolically inactive, the extent of aspartic acid (Asp) racemization will increase over time and might kill the spores by preventing their germination. Therefore, understanding the relationship between endospore survivability and Asp racemization is important for constraining the long-term survivability and global dispersion of spore-forming bacteria in nature. Geobacillus stearothermophilus was selected as a model organism to investigate racemization kinetics and survivability of its endospores at 65°C, 75°C and 98°C. This study found that the Asp racemization rates of spores and autoclaved spores were similar at all temperatures. The Asp racemization rate of spores was not significantly different from that of vegetative cells at 65°C. The Asp racemization rate of G. stearothermophilus spores was not significantly different from that of Bacillus subtilis spores at 98°C. The viability of spores and vegetative cells decreased dramatically over time, and the mortality of spores correlated exponentially with the degree of racemization (R2 = 0.9). This latter correlation predicts spore half-lives on the order of hundreds of years for temperatures typical of shallow marine sediments, a result consistent with studies about the survivability of thermophilic spores found in these environments.


Asunto(s)
Ácido Aspártico/metabolismo , Geobacillus stearothermophilus/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Ácido Aspártico/química , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Geobacillus stearothermophilus/crecimiento & desarrollo , Cinética , Viabilidad Microbiana , Esporas Bacterianas/metabolismo , Esterilización , Temperatura
20.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152014

RESUMEN

The prevalence of microbial life in permafrost up to several million years (Ma) old has been well documented. However, the long-term survivability, evolution, and metabolic activity of the entombed microbes over this time span remain underexplored. We integrated aspartic acid (Asp) racemization assays with metagenomic sequencing to characterize the microbial activity, phylogenetic diversity, and metabolic functions of indigenous microbial communities across a ∼0.01- to 1.1-Ma chronosequence of continuously frozen permafrost from northeastern Siberia. Although Asp in the older bulk sediments (0.8 to 1.1 Ma) underwent severe racemization relative to that in the youngest sediment (∼0.01 Ma), the much lower d-Asp/l-Asp ratio (0.05 to 0.14) in the separated cells from all samples suggested that indigenous microbial communities were viable and metabolically active in ancient permafrost up to 1.1 Ma. The microbial community in the youngest sediment was the most diverse and was dominated by the phyla Actinobacteria and Proteobacteria In contrast, microbial diversity decreased dramatically in the older sediments, and anaerobic, spore-forming bacteria within Firmicutes became overwhelmingly dominant. In addition to the enrichment of sporulation-related genes, functional genes involved in anaerobic metabolic pathways such as fermentation, sulfate reduction, and methanogenesis were more abundant in the older sediments. Taken together, the predominance of spore-forming bacteria and associated anaerobic metabolism in the older sediments suggest that a subset of the original indigenous microbial community entrapped in the permafrost survived burial over geological time.IMPORTANCE Understanding the long-term survivability and associated metabolic traits of microorganisms in ancient permafrost frozen millions of years ago provides a unique window into the burial and preservation processes experienced in general by subsurface microorganisms in sedimentary deposits because of permafrost's hydrological isolation and exceptional DNA preservation. We employed aspartic acid racemization modeling and metagenomics to determine which microbial communities were metabolically active in the 1.1-Ma permafrost from northeastern Siberia. The simultaneous sequencing of extracellular and intracellular genomic DNA provided insight into the metabolic potential distinguishing extinct from extant microorganisms under frozen conditions over this time interval. This in-depth metagenomic sequencing advances our understanding of the microbial diversity and metabolic functions of extant microbiomes from early Pleistocene permafrost. Therefore, these findings extend our knowledge of the survivability of microbes in permafrost from 33,000 years to 1.1 Ma.


Asunto(s)
Bacterias Anaerobias/metabolismo , Sedimentos Geológicos/microbiología , Microbiota , Hielos Perennes/microbiología , Filogenia , Siberia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...