Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 593(7860): 528-534, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34040212

RESUMEN

Van der Waals heterostructures display numerous unique electronic properties. Nonlocal measurements, wherein a voltage is measured at contacts placed far away from the expected classical flow of charge carriers, have been widely used in the search for novel transport mechanisms, including dissipationless spin and valley transport1-9, topological charge-neutral currents10-12, hydrodynamic flows13 and helical edge modes14-16. Monolayer1-5,10,15-19, bilayer9,11,14,20 and few-layer21 graphene, transition-metal dichalcogenides6,7 and moiré superlattices8,10,12 have been found to display pronounced nonlocal effects. However, the origin of these effects is hotly debated3,11,17,22-24. Graphene, in particular, exhibits giant nonlocality at charge neutrality1,15-19, a striking behaviour that has attracted competing explanations. Using a superconducting quantum interference device on a tip (SQUID-on-tip) for nanoscale thermal and scanning gate imaging25, here we demonstrate that the commonly occurring charge accumulation at graphene edges23,26-31 leads to giant nonlocality, producing narrow conductive channels that support long-range currents. Unexpectedly, although the edge conductance has little effect on the current flow in zero magnetic field, it leads to field-induced decoupling between edge and bulk transport at moderate fields. The resulting giant nonlocality at charge neutrality and away from it produces exotic flow patterns that are sensitive to edge disorder, in which charges can flow against the global electric field. The observed one-dimensional edge transport is generic and nontopological and is expected to support nonlocal transport in many electronic systems, offering insight into the numerous controversies and linking them to long-range guided electronic states at system edges.

2.
Nature ; 576(7786): E6, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31772389

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 575(7784): 628-633, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31634903

RESUMEN

Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations1,2. Dissipationless topologically protected states are therefore of major fundamental interest as well as of practical importance in metrology and quantum information technology. Although topological protection can be robust theoretically, in realistic devices it is often susceptible to various dissipative mechanisms, which are difficult to study directly because of their microscopic origins. Here we use scanning nanothermometry3 to visualize and investigate the microscopic mechanisms that undermine dissipationless transport in the quantum Hall state in graphene. Simultaneous nanoscale thermal and scanning gate microscopy shows that the dissipation is governed by crosstalk between counterpropagating pairs of downstream and upstream channels that appear at graphene boundaries as a result of edge reconstruction. Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work-generating process that we image directly, which involves elastic tunnelling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat. By contrast, the heat and entropy generation process-which we visualize independently-occurs nonlocally upon resonant inelastic scattering from single atomic defects at graphene edges, and does not affect transport. Our findings provide an insight into the mechanisms that conceal the true topological protection, and suggest routes towards engineering more robust quantum states for device applications.

4.
Sci Adv ; 5(12): eaay8897, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32064323

RESUMEN

When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moiré pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moiré patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moiré pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moiré super cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...