Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 124(17): 176402, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32412257

RESUMEN

Landau-level spectroscopy, the optical analysis of electrons in materials subject to a strong magnetic field, is a versatile probe of the electronic band structure and has been successfully used in the identification of novel states of matter such as Dirac electrons, topological materials or Weyl semimetals. The latter arise from a complex interplay between crystal symmetry, spin-orbit interaction, and inverse ordering of electronic bands. Here, we report on unusual Landau-level transitions in the monopnictide TaP that decrease in energy with increasing magnetic field. We show that these transitions arise naturally at intermediate energies in time-reversal-invariant Weyl semimetals where the Weyl nodes are formed by a partially gapped nodal-loop in the band structure. We propose a simple theoretical model for electronic bands in these Weyl materials that captures the collected magneto-optical data to great extent.

2.
J Phys Condens Matter ; 31(14): 145501, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30634183

RESUMEN

The Landau level spectroscopy technique has been used to explore the electronic structure of the valence band in a series of p-type HgTe/HgCdTe quantum wells with both normal and inverted ordering of bands. We find that the standard axial-symmetric 4-band Kane model, which is nowadays widely applied in physics of HgTe-based topological materials, does not fully account for the complex magneto-optical response observed in our experiments-notably, for the unexpected avoided crossings of excitations and for the appearance of transitions that are electric-dipole forbidden within this model. Nevertheless, reasonable agreement with experiments is achieved when the standard model is expanded to include effects of bulk and interface inversion asymmetries. These remove the axial symmetry, and among other, profoundly modify the shape of valence bands.

3.
Sci Rep ; 7(1): 6891, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761158

RESUMEN

Despite intensive investigations of Bi2Se3 in past few years, the size and nature of the bulk energy band gap of this well-known 3D topological insulator still remain unclear. Here we report on a combined magneto-transport, photoluminescence and infrared transmission study of Bi2Se3, which unambiguously shows that the energy band gap of this material is direct and reaches E g = (220 ± 5) meV at low temperatures.

4.
Phys Rev Lett ; 117(13): 136401, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715109

RESUMEN

We report on optical reflectivity experiments performed on Cd_{3}As_{2} over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.

5.
Science ; 353(6299): 575-9, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27493182

RESUMEN

Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here, we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals. We use a strong in-plane magnetic field as a tool to resolve the contributions of the chiral electronic states that have a phase difference between the two components of their vector wave function. Our experiments not only shed light on chirality, but also demonstrate a technique for preparing graphene's Dirac electrons in a particular quantum chiral state in a selected valley.

6.
Phys Rev Lett ; 116(10): 106801, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27015501

RESUMEN

We report on an absolute measurement of the electronic spin polarization of the ν=1 integer quantum Hall state. The spin polarization is extracted in the vicinity of ν=1 (including at exactly ν=1) via resistive NMR experiments performed at different magnetic fields (electron densities) and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around ν=1. Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.

7.
Sci Rep ; 6: 19087, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26750455

RESUMEN

The Faraday effect is a representative magneto-optical phenomenon, resulting from the transfer of angular momentum between interacting light and matter in which time-reversal symmetry has been broken by an externally applied magnetic field. Here we report on the Faraday rotation induced in the prominent 3D topological insulator Bi2Se3 due to bulk interband excitations. The origin of this non-resonant effect, extraordinarily strong among other non-magnetic materials, is traced back to the specific Dirac-type Hamiltonian for Bi2Se3, which implies that electrons and holes in this material closely resemble relativistic particles with a non-zero rest mass.

8.
Nano Lett ; 15(8): 4914-21, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26132110

RESUMEN

Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.

9.
Nat Commun ; 6: 7230, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26027889

RESUMEN

Valleytronics is rapidly emerging as an exciting area of basic and applied research. In two-dimensional systems, valley polarization can dramatically modify physical properties through electron-electron interactions as demonstrated by such phenomena as the fractional quantum Hall effect and the metal-insulator transition. Here, we address the electrons' spin alignment in a magnetic field in silicon-on-insulator quantum wells under valley polarization. In stark contrast to expectations from a non-interacting model, we show experimentally that less magnetic field can be required to fully spin polarize a valley-polarized system than a valley-degenerate one. Furthermore, we show that these observations are quantitatively described by parameter-free ab initio quantum Monte Carlo simulations. We interpret the results as a manifestation of the greater stability of the spin- and valley-degenerate system against ferromagnetic instability and Wigner crystalization, which in turn suggests the existence of a new strongly correlated electron liquid at low electron densities.

10.
J Phys Condens Matter ; 27(27): 275801, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26086605

RESUMEN

The resistively detected nuclear magnetic resonance (RDNMR) performed on a two-dimensional electron gas is known to exhibit a peculiar 'dispersive' line shape at some filling factors, especially around ν = 1. Here, we study in detail the inversion of the dispersive line shape as a function of the filling factor from ν = 1 to 2/3. The RDNMR spectra show a new characteristic W line shape in the longitudinal resistance, whereas dispersive lines detected in the Hall resistance remain unchanged. This W resonance, like the dispersive line, can be fitted correctly by a model of two independent response functions, which are the signatures of polarized and unpolarized electronic sub-systems.

11.
Phys Rev Lett ; 114(18): 186401, 2015 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-26001011

RESUMEN

We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental band gap and the band velocity. In a magnetic field, this model implies a unique property-spin splitting equal to twice the cyclotron energy: Es=2Ec. This explains the extensive magnetotransport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es=2Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es=Ec always holds.

12.
Phys Rev Lett ; 111(9): 096601, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24033057

RESUMEN

We report the phase space defined by the quantum Hall effect breakdown in polymer gated epitaxial graphene on SiC (SiC/G) as a function of temperature, current, carrier density, and magnetic fields up to 30 T. At 2 K, breakdown currents (I(c)) almost 2 orders of magnitude greater than in GaAs devices are observed. The phase boundary of the dissipationless state (ρ(xx)=0) shows a [1-(T/T(c))2] dependence and persists up to T(c)>45 K at 29 T. With magnetic field I(c) was found to increase ∝B(3/2) and T(c)∝B2. As the Fermi energy pproaches the Dirac point, the ν=2 quantized Hall plateau appears continuously from fields as low as 1 T up to at least 19 T due to a strong magnetic field dependence of the carrier density.

13.
Nature ; 497(7451): 594-7, 2013 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-23676678

RESUMEN

Superlattices have attracted great interest because their use may make it possible to modify the spectra of two-dimensional electron systems and, ultimately, create materials with tailored electronic properties. In previous studies (see, for example, refs 1-8), it proved difficult to realize superlattices with short periodicities and weak disorder, and most of their observed features could be explained in terms of cyclotron orbits commensurate with the superlattice. Evidence for the formation of superlattice minibands (forming a fractal spectrum known as Hofstadter's butterfly) has been limited to the observation of new low-field oscillations and an internal structure within Landau levels. Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate's moiré potential acts as a superlattice and leads to profound changes in the graphene's electronic spectrum. Second-generation Dirac points appear as pronounced peaks in resistivity, accompanied by reversal of the Hall effect. The latter indicates that the effective sign of the charge carriers changes within graphene's conduction and valence bands. Strong magnetic fields lead to Zak-type cloning of the third generation of Dirac points, which are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices such as this one provide a way of studying the rich physics expected in incommensurable quantum systems and illustrate the possibility of controllably modifying the electronic spectra of two-dimensional atomic crystals by varying their crystallographic alignment within van der Waals heterostuctures.

14.
Phys Rev Lett ; 108(11): 117401, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540506

RESUMEN

The Fermi surface of graphite has been mapped out using de Haas-van Alphen (dHvA) measurements at low temperature with in-situ rotation. For tilt angles θ>60° between the magnetic field and the c axis, the majority electron and hole dHvA periods no longer follow a cos(θ) behavior demonstrating that graphite has a three-dimensional closed Fermi surface. The Fermi surface of graphite is accurately described by highly elongated ellipsoids. A comparison with the calculated Fermi surface suggests that the Slonczewski-Weiss-McClure trigonal warping parameter γ(3) is significantly larger than previously thought.

15.
Phys Rev Lett ; 108(6): 066810, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401109

RESUMEN

Resistively detected nuclear magnetic resonance is used to measure the Knight shift of the 75As nuclei and determine the electron spin polarization of the fractional quantum Hall states of the second Landau level. We show that the 5/2 state is fully polarized within experimental error, thus confirming a fundamental assumption of the Moore-Read theory. We measure the electron heating under radio frequency excitation and show that we are able to detect NMR at electron temperatures down to 30 mK.

16.
Phys Rev Lett ; 104(21): 216801, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20867126

RESUMEN

We report the observation of a new phenomenon of colossal magnetoresistance in a 40 nm wide GaAs quantum well in the presence of an external magnetic field applied parallel to the high-mobility 2D electron layer. In a strong magnetic field, the magnetoresistance is observed to increase by a factor of ∼300 from 0 to 45 T without the system undergoing any metal-insulator transition. We discuss how this colossal magnetoresistance effect cannot be attributed to the spin degree of freedom or localization physics, but most likely emanates from strong magneto-orbital coupling between the two-dimensional electron gas and the magnetic field. Our observation is consistent with a field-induced 2D-to-3D transition in the confined electronic system.

17.
Phys Rev Lett ; 101(18): 186806, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18999851

RESUMEN

Using a tilted-field geometry, the effect of an in-plane magnetic field on the even denominator nu=5/2 fractional quantum Hall state is studied. The energy gap of the nu=5/2 state is found to collapse linearly with the in-plane magnetic field above approximately 0.5 T. In contrast, a strong enhancement of the gap is observed for the nu=7/3 state. The radically distinct tilted-field behavior between the two states is discussed in terms of Zeeman and magneto-orbital coupling within the context of the proposed Moore-Read Pfaffian wave function for the 5/2 fractional quantum Hall effect.

18.
Phys Rev Lett ; 100(14): 146803, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18518063

RESUMEN

The fractional quantum Hall effect is observed at low magnetic field where the cyclotron energy is smaller than the Coulomb interaction energy. The nu=5/2 excitation gap at 2.63 T is measured to be 262+/-15 mK, similar to values obtained in samples with twice the electronic density. Examining the role of disorder on the 5/2 state, we find that a large discrepancy remains between theory and experiment for the intrinsic gap extrapolated from the infinite mobility limit. The observation of a 5/2 state in the low-field regime suggests that inclusion of nonperturbative Landau level mixing may be necessary to fully understand the energetics of half-filled fractional quantum Hall liquids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...