Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 17037, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34426607

RESUMEN

Two-dimensional layered materials offer the possibility to create artificial vertically stacked structures possessing an additional degree of freedom-the interlayer twist. We present a comprehensive optical study of artificially stacked bilayers (BLs) MoS[Formula: see text] encapsulated in hexagonal BN with interlayer twist angle ranging from 0[Formula: see text] to 60[Formula: see text] using Raman scattering and photoluminescence spectroscopies. It is found that the strength of the interlayer coupling in the studied BLs can be estimated using the energy dependence of indirect emission versus the A[Formula: see text]-E[Formula: see text] energy separation. Due to the hybridization of electronic states in the valence band, the emission line related to the interlayer exciton is apparent in both the natural (2H) and artificial (62[Formula: see text]) MoS[Formula: see text] BLs, while it is absent in the structures with other twist angles. The interlayer coupling energy is estimated to be of about 50 meV. The effect of temperature on energies and intensities of the direct and indirect emission lines in MoS[Formula: see text] BLs is also quantified.

2.
Sci Rep ; 11(1): 15506, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326349

RESUMEN

We demonstrate quantum emission capabilities from boron nitride structures which are relevant for practical applications and can be seamlessly integrated into a variety of heterostructures and devices. First, the optical properties of polycrystalline BN films grown by metalorganic vapour-phase epitaxy are inspected. We observe that these specimens display an antibunching in the second-order correlation functions, if the broadband background luminescence is properly controlled. Furthermore, the feasibility to use flexible and transparent substrates to support hBN crystals that host quantum emitters is explored. We characterise hBN powders deposited onto polydimethylsiloxane films, which display quantum emission characteristics in ambient environmental conditions.

3.
J Phys Condens Matter ; 33(2): 025701, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33055370

RESUMEN

Zeeman effect induced by the magnetic field introduces a splitting between the two valleys at K + and K - points of the Brillouin zone in monolayer semiconducting transition metal dichalcogenides. In consequence, the photoluminescence signal exhibits a field dependent degree of circular polarization. We present a comprehensive study of this effect in the case of a trion in monolayer MoTe2, showing that although time integrated data allows us to deduce a g-factor of the trion state, such an analysis cannot be substantiated by the timescales revealed in the time-resolved experiments.

4.
Rev Sci Instrum ; 92(12): 123909, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972398

RESUMEN

We present an experimental setup developed to perform optical spectroscopy experiments (Raman scattering and photoluminescence measurements) with a micrometer spatial resolution in an extreme environment of low temperature, high magnetic field, and high pressure. This unique experimental setup, to the best of our knowledge, allows us to deeply explore the phase diagram of condensed matter systems by independently tuning these three thermodynamic parameters while monitoring the low-energy excitations (electronic, phononic, or magnetic excitations) to spatially map the Raman scattering response or to investigate objects with low dimensions. We apply this technique to bulk FePS3, a layered antiferromagnet with a Néel temperature of T ≈ 120 K.

5.
Nat Commun ; 11(1): 4037, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32788704

RESUMEN

Excitons with binding energies of a few hundreds of meV control the optical properties of transition metal dichalcogenide monolayers. Knowledge of the fine structure of these excitons is therefore essential to understand the optoelectronic properties of these 2D materials. Here we measure the exciton fine structure of MoS2 and MoSe2 monolayers encapsulated in boron nitride by magneto-photoluminescence spectroscopy in magnetic fields up to 30 T. The experiments performed in transverse magnetic field reveal a brightening of the spin-forbidden dark excitons in MoS2 monolayer: we find that the dark excitons appear at 14 meV below the bright ones. Measurements performed in tilted magnetic field provide a conceivable description of the neutral exciton fine structure. The experimental results are in agreement with a model taking into account the effect of the exchange interaction on both the bright and dark exciton states as well as the interaction with the magnetic field.

6.
Nanoscale ; 12(35): 18153-18159, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32853305

RESUMEN

Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2 encapsulated in hexagonal BN (hBN). We find that this system is an n-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be g ∼ -8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.

7.
Sci Rep ; 10(1): 4981, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32188877

RESUMEN

Atomically thin materials, like semiconducting transition metal dichalcogenides (S-TMDs), are highly sensitive to the environment. This opens up an opportunity to externally control their properties by changing their surroundings. Photoluminescence and reflectance contrast techniques are employed to investigate the effect of metallic substrates on optical properties of MoSe2 monolayer (ML). The optical spectra of MoSe2 MLs deposited on Pt, Au, Mo and Zr have distinctive metal-related lineshapes. In particular, a substantial variation in the intensity ratio and the energy separation between a negative trion and a neutral exciton is observed. It is shown that using metals as substrates affects the doping of S-TMD MLs. The explanation of the effect involves the Schottky barrier formation at the interface between the MoSe2 ML and the metallic substrates. The alignment of energy levels at the metal/semiconductor junction allows for the transfer of charge carriers between them. We argue that a proper selection of metallic substrates can be a way to inject appropriate types of carriers into the respective bands of S-TMDs.

8.
Nanotechnology ; 31(13): 135002, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31825902

RESUMEN

At cryogenic temperatures, the photoluminescence (PL) spectrum of monolayer WSe2 features a number of lines related to the recombination of so-called localized excitons (LEs). The intensity of these lines strongly decreases with increasing temperature. In order to understand the mechanism behind this phenomenon we carried out a time-resolved experiment, which revealed a similar trend in the PL decay time. Our results identify the opening of additional non-radiative relaxation channels as a primary cause of the observed temperature quenching of the LEs' PL.


Asunto(s)
Calcógenos/química , Compuestos de Tungsteno/química , Mediciones Luminiscentes , Temperatura
9.
Phys Rev Lett ; 123(13): 136801, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31697524

RESUMEN

We demonstrate that, in monolayers (MLs) of semiconducting transition metal dichalcogenides, the s-type Rydberg series of excitonic states follows a simple energy ladder: ε_{n}=-Ry^{*}/(n+δ)^{2}, n=1,2,…, in which Ry^{*} is very close to the Rydberg energy scaled by the dielectric constant of the medium surrounding the ML and by the reduced effective electron-hole mass, whereas the ML polarizability is accounted for only by δ. This is justified by the analysis of experimental data on excitonic resonances, as extracted from magneto-optical measurements of a high-quality WSe_{2} ML encapsulated in hexagonal boron nitride (hBN), and well reproduced with an analytically solvable Schrödinger equation when approximating the electron-hole potential in the form of a modified Kratzer potential. Applying our convention to other MoSe_{2}, WS_{2}, MoS_{2} MLs encapsulated in hBN, we estimate an apparent magnitude of δ for each of the studied structures. Intriguingly, δ is found to be close to zero for WSe_{2} as well as for MoS_{2} monolayers, what implies that the energy ladder of excitonic states in these two-dimensional structures resembles that of Rydberg states of a three-dimensional hydrogen atom.

10.
Phys Rev Lett ; 123(9): 096803, 2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31524465

RESUMEN

Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX_{2} (X being S or Se) spin forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe_{2} monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.

11.
Nat Commun ; 10(1): 2335, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133651

RESUMEN

The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe2/MoS2 type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe2 and MoS2, Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively.

12.
J Phys Condens Matter ; 31(14): 145501, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30634183

RESUMEN

The Landau level spectroscopy technique has been used to explore the electronic structure of the valence band in a series of p-type HgTe/HgCdTe quantum wells with both normal and inverted ordering of bands. We find that the standard axial-symmetric 4-band Kane model, which is nowadays widely applied in physics of HgTe-based topological materials, does not fully account for the complex magneto-optical response observed in our experiments-notably, for the unexpected avoided crossings of excitations and for the appearance of transitions that are electric-dipole forbidden within this model. Nevertheless, reasonable agreement with experiments is achieved when the standard model is expanded to include effects of bulk and interface inversion asymmetries. These remove the axial symmetry, and among other, profoundly modify the shape of valence bands.

13.
Sci Rep ; 8(1): 17745, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30531971

RESUMEN

We report a study of Raman scattering in few-layer MoTe2 focused on high-frequency out-of-plane vibrational modes near 291 cm-1 which are associated with the bulk-inactive [Formula: see text] mode. Our temperature-dependent measurements reveal a double peak structure of the feature related to these modes in the Raman scattering spectra of 4- and 5-layer MoTe2. In accordance with literature data, the doublet's lower- and higher-energy components are ascribed to the Raman-active A1g/[Formula: see text] vibrations involving, respectively, only the inner and surface layers. We demonstrate a strong enhancement of the inner mode's intensity at low temperature for 1.91 eV and 1.96 eV laser light excitation which suggests a resonant character of the Raman scattering processes probed under such conditions. A resonance of the laser light with a singularity of the electronic density of states at the M point of the MoTe2 Brillouin zone is proposed to be responsible for the observed effects.

14.
Nanotechnology ; 29(32): 325705, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29781447

RESUMEN

Embedding a WS2 monolayer in flakes of hexagonal boron nitride allowed us to resolve and study the photoluminescence response due to both singlet and triplet states of negatively charged excitons (trions) in this atomically thin semiconductor. The energy separation between the singlet and triplet states has been found to be relatively small reflecting rather weak effects of the electron-electron exchange interaction for the trion triplet in a WS2 monolayer, which involves two electrons with the same spin but from different valleys. Polarization-resolved experiments demonstrate that the helicity of the excitation light is better preserved in the emission spectrum of the triplet trion than in that of the singlet trion. Finally, the singlet (intravalley) trions are found to be observable even at ambient conditions whereas the emission due to the triplet (intervalley) trions is only efficient at low temperatures.

15.
Sci Rep ; 7(1): 6891, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761158

RESUMEN

Despite intensive investigations of Bi2Se3 in past few years, the size and nature of the bulk energy band gap of this well-known 3D topological insulator still remain unclear. Here we report on a combined magneto-transport, photoluminescence and infrared transmission study of Bi2Se3, which unambiguously shows that the energy band gap of this material is direct and reaches E g = (220 ± 5) meV at low temperatures.

16.
Sci Rep ; 6: 39619, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008964

RESUMEN

The electronic band structure of van der Waals (vdW) layered crystals has properties that depend on the composition, thickness and stacking of the component layers. Here we use density functional theory and high field magneto-optics to investigate the metal chalcogenide InSe, a recent addition to the family of vdW layered crystals, which transforms from a direct to an indirect band gap semiconductor as the number of layers is reduced. We investigate this direct-to-indirect bandgap crossover, demonstrate a highly tuneable optical response from the near infrared to the visible spectrum with decreasing layer thickness down to 2 layers, and report quantum dot-like optical emissions distributed over a wide range of energy. Our analysis also indicates that electron and exciton effective masses are weakly dependent on the layer thickness and are significantly smaller than in other vdW crystals. These properties are unprecedented within the large family of vdW crystals and demonstrate the potential of InSe for electronic and photonic technologies.

17.
Phys Rev Lett ; 117(13): 136401, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715109

RESUMEN

We report on optical reflectivity experiments performed on Cd_{3}As_{2} over a broad range of photon energies and magnetic fields. The observed response clearly indicates the presence of 3D massless charge carriers. The specific cyclotron resonance absorption in the quantum limit implies that we are probing massless Kane electrons rather than symmetry-protected 3D Dirac particles. The latter may appear at a smaller energy scale and are not directly observed in our infrared experiments.

18.
Science ; 353(6299): 575-9, 2016 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-27493182

RESUMEN

Chirality is a fundamental property of electrons with the relativistic spectrum found in graphene and topological insulators. It plays a crucial role in relativistic phenomena, such as Klein tunneling, but it is difficult to visualize directly. Here, we report the direct observation and manipulation of chirality and pseudospin polarization in the tunneling of electrons between two almost perfectly aligned graphene crystals. We use a strong in-plane magnetic field as a tool to resolve the contributions of the chiral electronic states that have a phase difference between the two components of their vector wave function. Our experiments not only shed light on chirality, but also demonstrate a technique for preparing graphene's Dirac electrons in a particular quantum chiral state in a selected valley.

19.
J Phys Condens Matter ; 28(36): 365301, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27391126

RESUMEN

We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T = 4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes + electron excitonic complex.

20.
J Phys Condens Matter ; 28(26): 265302, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27173643

RESUMEN

We present a comparative study of two self-assembled quantum dot (QD) systems based on II-VI compounds: CdTe/ZnTe and CdSe/ZnSe. Using magneto-optical techniques we investigated a large population of individual QDs. The systematic photoluminescence studies of emission lines related to the recombination of neutral exciton X, biexciton XX, and singly charged excitons (X(+), X(-)) allowed us to determine average parameters describing CdTe QDs (CdSe QDs): X-XX transition energy difference 12 meV (24 meV); fine-structure splitting δ1=0.14 meV (δ1=0.47 meV); g-factor g = 2.12 (g = 1.71); diamagnetic shift γ=2.5 µeV T(-2) (γ =1.3 µeV T(-2)). We find also statistically significant correlations between various parameters describing internal structure of excitonic complexes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...