Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 33(12)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34962232

RESUMEN

The simulated noise used to benchmark wavelet edge detection in this work was described incorrectly. The correct description is given here, and new results based on noise that matches the original description are provided. The results support our original conclusion, which is that wavelet edge detection outperforms thresholding in the presence of white noise and 1/fnoise.

2.
Nat Commun ; 11(1): 5756, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188210

RESUMEN

In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-nitride superlattices, Brown-Zak fermions can exhibit mobilities above 106 cm2 V-1 s-1 and the mean free path exceeding several micrometers. The exceptional quality of our devices allows us to show that Brown-Zak minibands are 4q times degenerate and all the degeneracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1 K. We also found negative bend resistance at 1/q fractions for electrical probes placed as far as several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions are Bloch quasiparticles propagating in high fields along straight trajectories, just like electrons in zero field.

3.
J Low Temp Phys ; 201(5): 772-802, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33239828

RESUMEN

Here we review recent progress in cooling micro-/nanoelectronic devices significantly below 10 mK. A number of groups worldwide are working to produce sub-millikelvin on-chip electron temperatures, motivated by the possibility of observing new physical effects and improving the performance of quantum technologies, sensors and metrological standards. The challenge is a longstanding one, with the lowest reported on-chip electron temperature having remained around 4 mK for more than 15 years. This is despite the fact that microkelvin temperatures have been accessible in bulk materials since the mid-twentieth century. In this review, we describe progress made in the last 5 years using new cooling techniques. Developments have been driven by improvements in the understanding of nanoscale physics, material properties and heat flow in electronic devices at ultralow temperatures and have involved collaboration between universities and institutes, physicists and engineers. We hope that this review will serve as a summary of the current state of the art and provide a roadmap for future developments. We focus on techniques that have shown, in experiment, the potential to reach sub-millikelvin electron temperatures. In particular, we focus on on-chip demagnetisation refrigeration. Multiple groups have used this technique to reach temperatures around 1 mK, with a current lowest temperature below 0.5 mK.

4.
Sci Rep ; 7(1): 4876, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687797

RESUMEN

Microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) are ideal candidates for exploring quantum fluids, since they can be manufactured reproducibly, cover the frequency range from hundreds of kilohertz up to gigahertz and usually have very low power dissipation. Their small size offers the possibility of probing the superfluid on scales comparable to, and below, the coherence length. That said, there have been hitherto no successful measurements of NEMS resonators in the liquid phases of helium. Here we report the operation of doubly-clamped aluminium nanobeams in superfluid 4He at temperatures spanning the superfluid transition. The devices are shown to be very sensitive detectors of the superfluid density and the normal fluid damping. However, a further and very important outcome of this work is the knowledge that now we have demonstrated that these devices can be successfully operated in superfluid 4He, it is straightforward to apply them in superfluid 3He which can be routinely cooled to below 100 µK. This brings us into the regime where nanomechanical devices operating at a few MHz frequencies may enter their mechanical quantum ground state.

5.
Sci Rep ; 7: 45566, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28374845

RESUMEN

We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

6.
Nat Commun ; 8: 14552, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211517

RESUMEN

An energy gap can be opened in the spectrum of graphene reaching values as large as 0.2 eV in the case of bilayers. However, such gaps rarely lead to the highly insulating state expected at low temperatures. This long-standing puzzle is usually explained by charge inhomogeneity. Here we revisit the issue by investigating proximity-induced superconductivity in gapped graphene and comparing normal-state measurements in the Hall bar and Corbino geometries. We find that the supercurrent at the charge neutrality point in gapped graphene propagates along narrow channels near the edges. This observation is corroborated by using the edgeless Corbino geometry in which case resistivity at the neutrality point increases exponentially with increasing the gap, as expected for an ordinary semiconductor. In contrast, resistivity in the Hall bar geometry saturates to values of about a few resistance quanta. We attribute the metallic-like edge conductance to a nontrivial topology of gapped Dirac spectra.

8.
Nat Commun ; 7: 10455, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26816217

RESUMEN

Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼ 10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range.

9.
Nanotechnology ; 26(21): 215201, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25930073

RESUMEN

The operation of solid-state qubits often relies on single-shot readout using a nanoelectronic charge sensor, and the detection of events in a noisy sensor signal is crucial for high fidelity readout of such qubits. The most common detection scheme, comparing the signal to a threshold value, is accurate at low noise levels but is not robust to low-frequency noise and signal drift. We describe an alternative method for identifying charge sensor events using wavelet edge detection. The technique is convenient to use and we show that, with realistic signals and a single tunable parameter, wavelet detection can outperform thresholding and is significantly more tolerant to 1/f and low-frequency noise.

10.
Proc Natl Acad Sci U S A ; 111(33): 11938-42, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25092298

RESUMEN

The qubit is the fundamental building block of a quantum computer. We fabricate a qubit in a silicon double-quantum dot with an integrated micromagnet in which the qubit basis states are the singlet state and the spin-zero triplet state of two electrons. Because of the micromagnet, the magnetic field difference ΔB between the two sides of the double dot is large enough to enable the achievement of coherent rotation of the qubit's Bloch vector around two different axes of the Bloch sphere. By measuring the decay of the quantum oscillations, the inhomogeneous spin coherence time T2* is determined. By measuring T2* at many different values of the exchange coupling J and at two different values of ΔB, we provide evidence that the micromagnet does not limit decoherence, with the dominant limits on T2* arising from charge noise and from coupling to nuclear spins.

11.
Nature ; 511(7507): 70-4, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990747

RESUMEN

The similarities between gated quantum dots and the transistors in modern microelectronics--in fabrication methods, physical structure and voltage scales for manipulation--have led to great interest in the development of quantum bits (qubits) in semiconductor quantum dots. Although quantum dot spin qubits have demonstrated long coherence times, their manipulation is often slower than desired for important future applications, such as factoring. Furthermore, scalability and manufacturability are enhanced when qubits are as simple as possible. Previous work has increased the speed of spin qubit rotations by making use of integrated micromagnets, dynamic pumping of nuclear spins or the addition of a third quantum dot. Here we demonstrate a qubit that is a hybrid of spin and charge. It is simple, requiring neither nuclear-state preparation nor micromagnets. Unlike previous double-dot qubits, the hybrid qubit enables fast rotations about two axes of the Bloch sphere. We demonstrate full control on the Bloch sphere with π-rotation times of less than 100 picoseconds in two orthogonal directions, which is more than an order of magnitude faster than any other double-dot qubit. The speed arises from the qubit's charge-like characteristics, and its spin-like features result in resistance to decoherence over a wide range of gate voltages. We achieve full process tomography in our electrically controlled semiconductor quantum dot qubit, extracting high fidelities of 85 per cent for X rotations (transitions between qubit states) and 94 per cent for Z rotations (phase accumulation between qubit states).

12.
Nat Commun ; 5: 3020, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24389977

RESUMEN

An important goal in the manipulation of quantum systems is the achievement of many coherent oscillations within the characteristic dephasing time T2(*). Most manipulations of electron spins in quantum dots have focused on the construction and control of two-state quantum systems, or qubits, in which each quantum dot is occupied by a single electron. Here we perform quantum manipulations on a system with three electrons per double quantum dot. We demonstrate that tailored pulse sequences can be used to induce coherent rotations between three-electron quantum states. Certain pulse sequences yield coherent oscillations fast enough that more than 100 oscillations are visible within a T2(*) time. The minimum oscillation frequency we observe is faster than 5 GHz. The presence of the third electron enables very fast rotations to all possible states, in contrast to the case when only two electrons are used, in which some rotations are slow.

14.
Phys Rev Lett ; 108(14): 140503, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22540779

RESUMEN

We propose a quantum dot qubit architecture that has an attractive combination of speed and fabrication simplicity. It consists of a double quantum dot with one electron in one dot and two electrons in the other. The qubit itself is a set of two states with total spin quantum numbers S(2)=3/4 (S=1/2) and S(z)=-1/2, with the two different states being singlet and triplet in the doubly occupied dot. Gate operations can be implemented electrically and the qubit is highly tunable, enabling fast implementation of one- and two-qubit gates in a simpler geometry and with fewer operations than in other proposed quantum dot qubit architectures with fast operations. Moreover, the system has potentially long decoherence times. These are all extremely attractive properties for use in quantum information processing devices.

15.
Phys Rev Lett ; 108(4): 046808, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22400879

RESUMEN

We investigate the lifetime of two-electron spin states in a few-electron Si/SiGe double dot. At the transition between the (1,1) and (0,2) charge occupations, Pauli spin blockade provides a readout mechanism for the spin state. We use the statistics of repeated single-shot measurements to extract the lifetimes of multiple states simultaneously. When the magnetic field is zero, we find that all three triplet states have equal lifetimes, as expected, and this time is ~10 ms. When the field is nonzero, the T(0) lifetime is unchanged, whereas the T- lifetime increases monotonically with the field, reaching 3 sec at 1 T.

16.
Phys Rev Lett ; 106(15): 156804, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21568595

RESUMEN

We demonstrate single-shot readout of a silicon quantum dot spin qubit, and we measure the spin relaxation time T1. We show that the rate of spin loading can be tuned by an order of magnitude by changing the amplitude of a pulsed-gate voltage, and the fraction of spin-up electrons loaded can also be controlled. This tunability arises because electron spins can be loaded through an orbital excited state. Using a theory that includes excited states of the dot and energy-dependent tunneling, we find that a global fit to the loading rate and spin-up fraction is in good agreement with the data.

17.
Phys Rev Lett ; 102(14): 146602, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19392464

RESUMEN

Measurements are presented of a device designed to cool a 6 microm;{2} region of 2D electron gas using quantum dots. Electrostatic effects are found to be significant in the device, and a model that accounts for them is developed. At ambient electron temperatures above 120 mK the results are consistent with the model and the base temperature of the cooled region is estimated. At an ambient electron temperature of 280 mK, the 6 microm;{2} region is found to be cooled below 190 mK. Below 120 mK the results deviate from predictions, which is attributed to reduced electron-electron scattering rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...