Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 7: 13857, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27976747

RESUMEN

The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin-orbit coupling for the development of the spin field-effect transistor.

2.
Nat Mater ; 15(12): 1261-1266, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27571452

RESUMEN

The spin-orbit interaction couples the electrons' motion to their spin. As a result, a charge current running through a material with strong spin-orbit coupling generates a transverse spin current (spin Hall effect, SHE) and vice versa (inverse spin Hall effect, ISHE). The emergence of SHE and ISHE as charge-to-spin interconversion mechanisms offers a variety of novel spintronic functionalities and devices, some of which do not require any ferromagnetic material. However, the interconversion efficiency of SHE and ISHE (spin Hall angle) is a bulk property that rarely exceeds ten percent, and does not take advantage of interfacial and low-dimensional effects otherwise ubiquitous in spintronic hetero- and mesostructures. Here, we make use of an interface-driven spin-orbit coupling mechanism-the Rashba effect-in the oxide two-dimensional electron system (2DES) LaAlO3/SrTiO3 to achieve spin-to-charge conversion with unprecedented efficiency. Through spin pumping, we inject a spin current from a NiFe film into the oxide 2DES and detect the resulting charge current, which can be strongly modulated by a gate voltage. We discuss the amplitude of the effect and its gate dependence on the basis of the electronic structure of the 2DES and highlight the importance of a long scattering time to achieve efficient spin-to-charge interconversion.

3.
J Phys Condens Matter ; 28(16): 165801, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-26988255

RESUMEN

We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.

4.
Phys Rev Lett ; 116(9): 096602, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991190

RESUMEN

We present results on spin to charge current conversion in experiments of resonant spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) α-Sn. By angle-resolved photoelectron spectroscopy (ARPES), we first check that the Dirac cone (DC) at the α-Sn (0 0 1) surface subsists after covering Sn with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into α-Sn layers induces a lateral charge current that can be ascribed to the inverse Edelstein effect by the DC states. Our observation of an inverse Edelstein effect length much longer than those generally found for Rashba interfaces demonstrates the potential of TIs for the conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of the TI for spin to charge conversion and the conditions to reach it.


Asunto(s)
Modelos Teóricos , Estaño/química , Hierro/química , Espectroscopía de Fotoelectrones/métodos , Plata/química , Temperatura
5.
J Phys Condens Matter ; 27(32): 326002, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26213808

RESUMEN

We have carried out measurements of domain wall dynamics in a Pt/Co/GdOx(t) wedge sample with perpendicular magnetic anisotropy. When driven by an easy-axis field Hz in the presence of an in-plane field Hx, the domain wall propagation is different along [Formula: see text]x, as expected for samples presenting Dzyaloshinskii-Moriya (DMI) interaction. In the creep regime, the sign and the value of the domain wall velocity asymmetry changes along the wedge. We show that in our samples the domain wall speed versus Hx curves in the creep regime cannot be explained simply in terms of the variation of the domain wall energy with Hx, as suggested by previous works. For this reason the strength and the sign of the DMI cannot be extracted from these measurements. To obtain reliable information on the DMI strength using magnetic field-induced domain wall dynamics, measurements have been performed with high fields, bringing the DW close to the flow regime of propagation. In this case we find large values of the DMI, consistent in magnitude and sign with those obtained from Brillouin light scattering measurements.

6.
Nano Lett ; 14(7): 4016-22, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24874296

RESUMEN

Using nonlocal spin injection, spin-orbit coupling, or spincaloritronic effects, the manipulation of pure spin currents in nanostructures underlies the development of new spintronic devices. Here, we demonstrate the possibility to create switchable pure spin current sources, controlled by magnetic domain walls. When the domain wall is located at a given point of the magnetic circuit, a pure spin current is injected into a nonmagnetic wire. Using the reciprocal measurement configuration, we demonstrate that the proposed device can also be used as a pure spin current detector. Thanks to its simple geometry, this device can be easily implemented in spintronics applications; in particular, a single current source can be used both to induce the domain wall motion and to generate the spin signal.

7.
Phys Rev Lett ; 112(10): 106602, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24679318

RESUMEN

Through combined ferromagnetic resonance, spin pumping, and inverse spin Hall effect experiments in Co|Pt bilayers and Co|Cu|Pt trilayers, we demonstrate consistent values of ℓsfPt=3.4±0.4 nm and θSHEPt=0.056±0.010 for the respective spin diffusion length and spin Hall angle for Pt. Our data and model emphasize the partial depolarization of the spin current at each interface due to spin-memory loss. Our model reconciles the previously published spin Hall angle values and explains the different scaling lengths for the ferromagnetic damping and the spin Hall effect induced voltage.

8.
Phys Rev Lett ; 109(10): 106603, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-23005314

RESUMEN

Electrical spin injection into semiconductors paves the way for exploring new phenomena in the area of spin physics and new generations of spintronic devices. However the exact role of interface states in the spin injection mechanism from a magnetic tunnel junction into a semiconductor is still under debate. In this Letter, we demonstrate a clear transition from spin accumulation into interface states to spin injection in the conduction band of n-Ge. We observe spin signal amplification at low temperature due to spin accumulation into interface states followed by a clear transition towards spin injection in the conduction band from 200 K up to room temperature. In this regime, the spin signal is reduced to a value compatible with the spin diffusion model. More interestingly, the observation in this regime of inverse spin Hall effect in germanium generated by spin pumping and the modulation of the spin signal by a gate voltage clearly demonstrate spin accumulation in the germanium conduction band.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...