Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Sci Rep ; 11(1): 3440, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564005

RESUMEN

Intraspecific diet specialization, usually driven by resource availability, competition and predation, is common in natural populations. However, the role of parasites on diet specialization of their hosts has rarely been studied. Eye flukes can impair vision ability of their hosts and have been associated with alterations of fish feeding behavior. Here it was assessed whether European perch (Perca fluviatilis) alter their diet composition as a consequence of infection with eye flukes. Young-of-the-year (YOY) perch from temperate Lake Müggelsee (Berlin, Germany) were sampled in two years, eye flukes counted and fish diet was evaluated using both stomach content and stable isotope analyses. Perch diet was dominated by zooplankton and benthic macroinvertebrates. Both methods indicated that with increasing eye fluke infection intensity fish had a more selective diet, feeding mainly on the benthic macroinvertebrate Dikerogammarus villosus, while less intensively infected fish appeared to be generalist feeders showing no preference for any particular prey type. Our results show that infection with eye flukes can indirectly affect interaction of the host with lower trophic levels by altering the diet composition and highlight the underestimated role of parasites in food web studies.

2.
Chem Commun (Camb) ; 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33606856

RESUMEN

The self-assembly of bifunctional photoredoxcatalysts is reported. A series of photosensitizers and water-reducing catalysts were functionalized with viologen- and naphthol-units, respectively. Subsequent formation of the heteroternary cucurbit[8]uril-viologen-naphthol complexes was used for the constitution of bifunctional photoredoxcatalysts for hydrogen generation.

3.
Environ Res ; : 110881, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33607099

RESUMEN

Cigarette butts (CBs) are the most frequently littered pieces of environmental wastes which are released both directly and indirectly into the environment and finally may reach aquatic environments and contaminate aquatic biomes. However, to date, there is no comprehensive review on the extent and magnitude of the potential effects of CBs on aquatic organisms. Hence, a systematic review of published studies was conducted in this paper to survey the fate of CBs in the aquatic environments and also the impacts of exposure to CBs on survival, growth, and reproduction of aquatic organisms. The gathered data showed that the leachates of CBs in the aquatic environment could extremely be toxic for various organisms and increasing the exposure time, increases the mortality rate. In addition, smoked filtered CBs with tobacco remnants have higher mortality rate compared to unsmoked filtered butts (USFs) for Hymenochirus curtipes, Clarias gariepinus, tidepool snails, Atherinops affinis and Pimephales promelas. The fate of CBs in the aquatic environments is affected by various factors, and prior to sinking they are floated for a long time (long distance). Hence, CBs and their associated toxic chemicals might be ingested by diverse aquatic organisms. However, further studies are necessary to understand the exact toxicity of CBs on different freshwater and marine organisms and also their fate in the aquatic media. The results of this review showed the essentiality of regulations to prevent the release of chemical and toxic compounds into the aquatic environments.

4.
J Chromatogr A ; 1641: 461965, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33611125

RESUMEN

The injection volume and the associated column volume overload is one of the most common issues in miniaturized chromatography. The injection volume should not exceed 10% of the effective column volume. A further reduction of the injection volume leads to an increase in chromatographic efficiency. However, the signal intensity must be above a certain threshold to generate a chromatographic peak that can be detected. Therefore, the injection volume has to be optimized to reach the ideal balance between chromatographic efficiency and sensitivity. This study examined the general influence of the injection volume for both isocratic and gradient elution, depending on the retention factor and peak standard deviation. For this purpose, substances of different polarity were selected to represent a broad elution spectrum. Besides the model analyte naphthalene, these were mainly pharmaceuticals. For all measurements a microbore column with an ID of 300 µm and packed with 1.9 µm fully porous particles was used. For isocratic elution, the injection volume was varied between 4 and 16% of the effective column volume. The retention factors were adjusted between 2 and 10. For gradient elution, the injection volume was varied between 4 and 160% of the effective column volume. The observed effects were further investigated using the gradient kinetic plot theory. In isocratic elution, a loss in plate height up to 50% was observed for components that elute near the void time. A significant reduction of the chromatographic efficiency was noticed up to a retention factor of 4. In gradient elution, a reduction in peak capacity could only be observed if the injection volume exceeded 40% of the effective column volume. For some substances, only a slight loss in peak capacity was noticed even with a volume overload of 160%.

5.
J Toxicol Environ Health A ; : 1-22, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622194

RESUMEN

The aim of this interdisciplinary research project in North Rhine-Westphalia (NRW), Germany, entitled "Elimination of pharmaceuticals and organic micropollutants from waste water" involved the conception of cost-effective and innovative waste-water cleaning methods. In this project in vitro assays, in vivo assays and chemical analyses were performed on three municipal waste-water treatment plants (WWTP). This publication focuses on the study of the in vitro bioassays. Cytotoxic, estrogenic, genotoxic and mutagenic effects of the original as well as enriched water samples were monitored before and after wastewater treatment steps using MTT and PAN I, ER Calux and A-YES, micronucleus and Comet assays as well as AMES test. In most cases, the measured effects were reduced after ozonation, but in general, the biological response depended upon the water composition of the WWTP, in particular on the formed by-products and concentration of micropollutants. In order to be able to assess the genotoxic and/or mutagenic potential of waste-water samples using bioassays like Ames test, Comet assay or micronucleus test an enrichment of the water sample via solid-phase extraction is recommended. This is in agreement with previous studies such as the "ToxBox"-Project of the Environmental Agency in Germany.

6.
Anal Bioanal Chem ; 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33624127

RESUMEN

The drugs used for treatment during chemotherapy are manufactured individually for each patient in specialised pharmacies. Thorough quality control to confirm the identity of the delivered active pharmaceutical ingredient and the final concentration of the prepared application solution is not standardized yet except for optical or gravimetric testing. However, solution stability problems, counterfeit drugs, and erroneous or deliberate underdosage may occur and negatively influence the quality of the product and could cause severe health risks for the patient. To take a step towards analytical quality control, an on-site analytical instrument using Raman and UV absorption spectroscopy was employed and the results were compared to high-performance liquid chromatography coupled to diode array detection. Within the scope of the technology evaluation, the uncertainty of measurement was determined for the analysis of the five frequently used cytostatic drugs 5-fluorouracil, cyclophosphamide, gemcitabine, irinotecan and paclitaxel. The Raman/UV technique (2.0-3.2% uncertainty of measurement; level of confidence: 95%) achieves a combined uncertainty of measurement comparable to HPLC-DAD (1.7-3.2% uncertainty of measurement; level of confidence: 95%) for the substances 5-fluorouracil, cyclophosphamide and gemcitabine. However, the uncertainty of measurement for the substances irinotecan and paclitaxel is three times higher when the Raman/UV technique is used. This is due to the fact that the Raman/UV technique analyses the undiluted sample; therefore, the sample has a higher viscosity and tendency to foam. Out of 136 patient-specific preparations analysed within this study, 96% had a deviation of less than 10% from the target content.

7.
Anal Bioanal Chem ; 413(5): 1321-1335, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33388849

RESUMEN

Effect-directed analysis (EDA) that combines effect-based methods (EBMs) with high-performance thin-layer chromatography (HPTLC) is a useful technique for spatial, temporal, and process-related effect evaluation and may provide a link between effect testing and responsible substance identification. In this study, a yeast multi endocrine-effect screen (YMEES) for the detection of endocrine effects is combined with HPTLC. Simultaneous detection of estrogenic, androgenic, and gestagenic effects on the HPTLC plate is achieved by mixing different genetically modified Arxula adeninivorans yeast strains, which contain either the human estrogen, androgen, or progesterone receptor. Depending on the yeast strain, different fluorescent proteins are formed when an appropriate substance binds to the specific hormone receptor. This allows to measure hormonal effects at different wavelengths. Two yeast cell application approaches, immersion and spraying, are compared. The sensitivity and reproducibility of the method are shown by dose-response investigations for reference compounds. The spraying approach indicated similar sensitivities and higher precisions for the tested hormones compared to immersion. The EC10s for estrone (E1), 17ß-estradiol (E2), 17α-ethinylestradiol (EE2), 5α-dihydrotestosterone (DHT), and progesterone (P4) were 95, 1.4, 10, 7.4, and 15 pg/spot, respectively. Recovery rates of E1, E2, EE2, DHT, and P4 between 88 and 120% show the usability of the general method in combination with sample enrichment by solid phase extraction (SPE). The simultaneous detection of estrogenic, androgenic, and gestagenic effects in wastewater and surface water samples demonstrates the successful application of the YMEES in such matrices. This promising method allows us to identify more than one endocrine effect on the same HPTLC plate, which saves time and material. The method could be used for comparison, evaluation, and monitoring of different river sites and wastewater treatment steps and should be tested in further studies.

8.
Environ Pollut ; 269: 116185, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33290951

RESUMEN

Cigarette butts (CBs) are the most abundant types of litter in the environment and may contain toxic chemicals such as BTEX that pose serious risks to the water bodies and health of aquatic organisms. So far there is no systematic study on BTEX compounds (benzene, toluene, ethylbenzene, o-xylene, and p-xylene) leaching from CBs into water environments. In this work, the leaching concentrations of BTEX compounds in deionized water (DW) and river water (RW) samples were studied for the first time. The mean concentrations of benzene, toluene, ethylbenzene, p-xylene, and o-xylene at contact times of 15 min to 1 day in water samples ranged from 0.13 to 0.18, 0.39-0.9, 0.11-0.25, 0.12-0.38, and 0.09-0.19 µgL-1 respectively. Benzene, toluene, ethylbenzene, o-xylene and p-xylene were detected at all contact times in both DW and RW samples. There were no significant differences of the leachate levels of BTEX compounds between DW and RW samples. The highest and lowest mean concentration levels in both DW and RW samples were determined for toluene and o-xylene respectively. The time after smoking had a significant effect on BTEX levels in leachates. The concentration levels of benzene, toluene, ethylbenzene, o-xylene and p-xylene leachates in water samples, after only 15 min, were reduced by 100, 93, 70, 68, and 59 percent respectively. Our data revealed that leached concentrations of benzene did not exceed the Water Framework Directive (WFD) guidelines, but with regard to the amount of CBs littered each year and other toxic chemicals contents of CBs this can still be a threat for aquatic creatures and possibly humans as well. Further studies are needed to cover the knowledge gap on the toxic leachates from CBs into water systems.

9.
Sci Total Environ ; : 142727, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33129546

RESUMEN

Micropollutants reach the aquatic environment through wastewater treatment plant effluents. Ozonation, applied in wastewater treatment for micropollutants abatement, can yield transformation products (TP), which might be of ecotoxicological concern. Previous studies on TP formation were mostly performed in ultrapure water. However, the water matrix can have a substantial influence and lead to unpredictable yields of TPs with toxicological potential. In this study the acute toxicity (immobilization) of the parent substances (isoproturon and metoprolol) and also of available TPs of isoproturon, metoprolol and diclofenac towards Daphnia magna (D. magna) were investigated. Further, the acute toxicity of TP mixtures, formed during ozonation of isoproturon, metoprolol and diclofenac was evaluated in the following systems: in the presence of radical scavengers (tert-butanol and dimethyl sulfoxide) and in the presence of hypobromous acid (HOBr), a secondary oxidant in ozonation. For all tested substances and TP standards, except 2,6-dichloroaniline (EC50 1.02 mg/L (48 h)), no immobilization of D. magna was detected. Ozonated pure water and wastewater did not show an immobilization effect either. After ozonation of diclofenac in the presence of dimethyl sulfoxide 95% (48 h) of the daphnids were immobile. Ozonation of parent substances, after the reaction with HOBr, showed no effect for isoproturon but a high effect on D. magna for diclofenac (95% immobilization (48 h)) and an even higher effect for metoprolol (100% immobilization (48 h)). These results emphasize that complex water matrices can influence the toxicity of TPs as shown in this study for D. magna.

10.
Anal Bioanal Chem ; 412(28): 7713-7722, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32944811

RESUMEN

Free available chlorine (FAC) is the most widely used chemical for disinfection and in secondary disinfection; a minimum chlorine residual must be present in the distribution system. FAC can also be formed as an impurity in ClO2 production as well as a secondary oxidant in the ClO2 application, which has to be monitored. In this study, a new method is developed based on the reaction of FAC with glycine in which the amine group selectively scavenges FAC and the N-chloroglycine formed can be measured by ion chromatography with conductivity detector (IC-CD). Utilizing IC for N-chloroglycine measurement allows this method to be incorporated into routine monitoring of drinking water anions. For improving the sensitivity, IC was coupled with post-column reaction and UV detection (IC-PCR-UV), which was based on iodide oxidation by N-chloroglycine resulting in triiodide. The method performance was quantified by comparison of the results with the N,N-diethyl-p-phenylenediamine (DPD) method due to the unavailability of an N-chloroglycine standard. The N-chloroglycine method showed limits of quantification (LOQ) of 24 µg L-1 Cl2 and 13 µg L-1 Cl2 for IC-CD and IC-PCR-UV, respectively. These values were lower than those of DPD achieved in this research and in ultrapure water. Measurement of FAC in the drinking water matrix showed comparable robustness and sensitivity with statistically equivalent concentration that translated to recoveries of 102% for IC-CD and 105% for IC-PCR-UV. Repeatability and reproducibility performance were enhanced in the order of DPD, IC-CD, and IC-PCR-UV. Measurement of intrinsic FAC in the ClO2 application revealed that the N-chloroglycine method performed considerably better in such a system where different oxidant species (ClO2, FAC, chlorite, etc.) were present.

11.
Anal Chem ; 92(18): 12273-12281, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32812753

RESUMEN

The use of liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) has steadily increased in many application fields ranging from metabolomics to environmental science. HRMS data are frequently used for nontarget screening (NTS), i.e., the search for compounds that are not previously known and where no reference substances are available. However, the large quantity of data produced by NTS analytical workflows makes data interpretation and time-dependent monitoring of samples very sophisticated and necessitates exploiting chemometric data processing techniques. Consequently, in this study, a prioritization method to handle time series in nontarget data was established. As proof of concept, industrial wastewater was investigated. As routine industrial wastewater analyses monitor the occurrence of a limited number of targeted water contaminants, NTS provides the opportunity to detect also unknown trace organic compounds (TrOCs) that are not in the focus of routine target analysis. The developed prioritization method enables reducing raw data and including identification of prioritized unknown contaminants. To that end, a five-month time series for industrial wastewaters was utilized, analyzed by liquid chromatography-time-of-flight mass spectrometry (LC-qTOF-MS), and evaluated by NTS. Following peak detection, alignment, grouping, and blank subtraction, 3303 features were obtained of wastewater treatment plant (WWTP) influent samples. Subsequently, two complementary ways for exploratory time trend detection and feature prioritization are proposed. Therefore, following a prefiltering step, featurewise principal component analysis (PCA) and groupwise PCA (GPCA) of the matrix (temporal wise) were used to annotate trends of relevant wastewater contaminants. With sparse factorization of data matrices using GPCA, groups of correlated features/mass fragments or adducts were detected, recovered, and prioritized. Similarities and differences in the chemical composition of wastewater samples were observed over time to reveal hidden factors accounting for the structure of the data. The detected features were reduced to 130 relevant time trends related to TrOCs for identification. Exemplarily, as proof of concept, one nontarget pollutant was identified as N-methylpyrrolidone. The developed chemometric strategies of this study are not only suitable for industrial wastewater but also could be efficiently employed for time trend exploration in other scientific fields.

12.
J Chromatogr A ; 1626: 461349, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-32797829

RESUMEN

In the present work, a very sensitive and fully automated direct immersion PAL SPME Arrow procedure, coupled with GC-MS, has been developed and validated for determination of nine phosphorus flame retardants in different types of water samples (river, drinking and rainwater). PDMS/DVB was selected among three commercially available SPME Arrows (PDMS/DVB, DVB/PDMS/CWR and PDMS/CWR), since it resulted in the best sensitivity. The important experimental parameters were optimized via a central composite design response surface methodology and as result, extraction time of 65 min, extraction temperature of 80 °C and added salt concentration of 19% (w/v), were selected as the optimum values. The optimized method showed linear response over the calibration range (2 - 500 ng L-1), with R2-values higher than 0.9937. The precision (RSD%) measured by replicate analyses (n = 7) was estimated at 2 and 100 ng L-1 and was less than 29% and 21%, respectively. The LOQ of PAL SPME Arrow, calculated as S/N = 10, was between 0.2 and 1.2 ng L-1 (for triphenyl phosphate and tris-(1­chloro­2-propyl) phosphate, respectively) with extraction efficiencies between 5.9 and 31% (for tris-(1,3-dichloro-2-propyl) phosphate and tri-n­butyl phosphate, respectively). To assess the performance of the developed technique for real samples, two river water samples, tap water from two regions and a rainwater sample were analyzed. Most of the target analytes were observed in the river samples with concentrations of 1.0 - 250 ng L-1 and the obtained recoveries at 50 ng L-1 ranged between 60 and 107%. Considering the figures of merit of the optimized method, PAL SPME Arrow-GC-MS showed to be the most sensitive analytical approach for determination of phosphorus flame retardants in water, with satisfying precision and accuracy, compared with conventional SPME-NPD, LLE-GC-MS and SPE-LC-MS/MS.


Asunto(s)
Retardadores de Llama/análisis , Fósforo/análisis , Microextracción en Fase Sólida/métodos , Contaminantes Químicos del Agua/análisis , Automatización , Dimetilpolisiloxanos/química , Cromatografía de Gases y Espectrometría de Masas , Polivinilos/química , Soluciones
13.
Anal Bioanal Chem ; 412(23): 5853-5861, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32676676

RESUMEN

A GCxGC-MS system was employed with a non-polar × mid-polar column set for the metabolic non-target analysis of Cobetia marina, the model bacteria for marine biofouling. C. marina was treated with ozone to investigate the intracellular metabolic state change under oxidative stress. A minimal inhibitory concentration test was involved to guarantee that the applied ozone dosages were not lethal for the cells. In this study, non-target analyses were performed to identify the metabolites according to the NIST database. As a result, over 170 signals were detected under normal living conditions including 35 potential metabolites. By the comparison of ozone-treated and non-treated samples, five compounds were selected to describe observed trends of signals in the contour plots. Oleic acid exhibited a slight growth by increasing ozone dosage. In contrast, other metabolites such as the amino acid L-proline showed less abundance after ozone treatment, which was more evident once ozone dosage was raised. Thus, this work could provide a hint for searching for up/downregulating factors in such environmental stress conditions for C. marina. Graphical abstract.

14.
Int J Parasitol Parasites Wildl ; 12: 134-141, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32547919

RESUMEN

Stable isotope analysis offers a unique tool for comparing trophic interactions and food web architecture in ecosystems based on analysis of stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) in organisms. Clarias gariepinus were collected from six sites along the Vaal River, South Africa and were assessed for ectoparasites and endoparasites. Lamproglena clariae (Copepoda), Tetracampos ciliotheca and Proteocephalus glanduligerus (Cestoda), and larval Contracaecum sp. (Nematoda) were collected from the gills, intestine and mesenteries, respectively. Signatures of δ13C and δ15N were analysed in host muscle tissue and parasites using bulk stable isotope analysis. Variable stable isotope enrichment between parasites and host were observed; L. clariae and the host shared similar δ15N signatures and endoparasites being depleted in δ13C and δ15N relative to the host. Differences in stable isotope enrichment between parasites could be related to the feeding strategy of each parasite species collected. Geographic and spatial differences in enrichment of stable isotopes observed in hosts were mirrored by parasites. As parasites rely on a single host for meeting their nutritional demands, stable isotope variability in parasites relates to the dietary differences of host organisms and therefore variations in baseline stable isotope signatures of food items consumed by hosts.

15.
Environ Sci Technol ; 54(11): 6713-6722, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32383866

RESUMEN

Oxidative processes frequently contribute to organic pollutant degradation in natural and engineered systems, such as during the remediation of contaminated sites and in water treatment processes. Because a systematic characterization of abiotic reactions of organic pollutants with oxidants such as ozone or hydroxyl radicals by compound-specific stable isotope analysis (CSIA) is lacking, stable isotope-based approaches have rarely been applied for the elucidation of mechanisms of such transformations. Here, we investigated the carbon isotope fractionation associated with the oxidation of benzene and several methylated and methoxylated analogs, namely, toluene, three xylene isomers, mesitylene, and anisole, and determined their carbon isotope enrichments factors (εC) for reactions with ozone (εC = -3.6 to -4.6 ‰) and hydroxyl radicals (εC = 0.0 to -1.2‰). The differences in isotope fractionation can be used to elucidate the contribution of the reactions with ozone or hydroxyl radicals to overall transformation. Derivation of apparent kinetic isotope effects (AKIEs) for the reaction with ozone, however, was nontrivial due to challenges in assigning reactive positions in the probe compounds for the monodentate attack leading to an ozone adduct. We present several options for this step and compare the outcome to quantum chemical characterizations of ozone adducts. Our data show that a general assignment of reactive positions for reactions of ozone with aromatic carbons in ortho-, meta-, or para-positions is not feasible and that AKIEs of this reaction should be derived on a compound-by-compound basis.


Asunto(s)
Radical Hidroxilo , Ozono , Benceno , Biodegradación Ambiental , Isótopos de Carbono/análisis , Fraccionamiento Químico
16.
Anal Bioanal Chem ; 412(20): 4921-4930, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32458017

RESUMEN

N-containing heterocycles (NCHs) are largely used as precursors for pharmaceuticals and can enter the environment. Some NCHs have been shown to be toxic, persistent, and very mobile in the environment. Thus, they have received increasing attention in the past years. However, the analysis of these polar compounds in environmental samples is still a challenge for liquid chromatography. This paper investigates the use of mixed-mode liquid chromatography (MMLC), which has reversed-phase and ion exchange characteristics for measurements of NCHs in water. NCHs with low pKa (i.e., < 2.5) display mainly reversed-phase interactions (neutral species) with the stationary phase and those with higher pKa (i.e., > 5) interact by a mixture of reversed-phase/ion exchange/HILIC mechanism. It was also shown that the presented method performs well in the quantification of the majority of the selected NCHs in surface water with MDLs between 3 and 6 µg/L, a low matrix effect and recoveries in the range of 77-96% except for pyridazine exhibiting 32% were achieved. The method was successfully employed to follow the degradation of NCHs in ozonation.

17.
MethodsX ; 7: 100732, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32346526

RESUMEN

The analysis of microplastics in sediments, soils or beach samples is commonly paired with a separation step to enrich microplastics or to remove non-plastics, respectively. Those steps are often very time consuming and are performed in presence of high concentrated solvents. The latter are also suspected to corrode or decompose the analyte particles, which hamper further identification processes. This paper describes a new fast and effective microplastics separation apparatus for analytical issues that was based on hydrophobic adhesion of microplastics and fine air bubbles. The presented prototype could successfully enrich over 90 %wt of 30ppmw microplastics in 200 g sand in 20 min. Additionally, it could be demonstrated that the new separation technique was very suitable for further microplastics identification by FTIR microscopy. In this context, a sample with different polymers and matrix components was analyzed and the results were presented within this article. •Microplastics were enriched selectively by hydrophobic adhesion.•No additional chemicals except water and air were used.•Separation took only 20 min and 90 %wtof microplastics were recovered.

18.
MethodsX ; 7: 100778, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32300541

RESUMEN

The combination of a representative microplastic sampling method and a fast-quantitative analysis using Pyrolysis-GC-MS (Py-GC-MS) for investigation of the microplastic load and mass balances is presented in this work. A representative microplastic filtration requires a method allowing quick extraction of the sample. The developed steel based cascadic microplastic filtration uses steel basket filters with mesh sizes of 100 µm, 50 µm and 10 µm and a mean recovery of 86 % without cross contamination was achieved. Thermoanalytical methods have the advantage of minimal sample preparation with short analysis times. The presented platinum filament-based Py-GC-MS method requires little sample preparation and quantification limits for polystyrene (PS) and polyethylene (PE) were 0.03 µg and 1 µg absolute, respectively. The relative standard deviation of the analytical method is 11 %. The combined method allows representative sampling and analysis of MP from water bodies and waste water treatment plants within 48 h. •Presentation of a validated steel based cascadic microplastic filtration plant.•Fast and reproduceable Py-GC-MS analysis method for microplastic.•Py-GC-MS allows microplastic analysis with little sample preparation.

19.
J Hazard Mater ; 392: 122271, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32311916

RESUMEN

Contaminants of emerging concern (CECs) have recently been detected in bottled water and have brought about discussions on possible risks for human health. However, a systematic review of CECs in bottled water is currently lacking due to the relatively new introduction and/or detection of these pollutants. Hence, this paper reviews the existing studies on the presence of six major groups of emerging contaminants including microplastics (MPs), pharmaceuticals and personal care products (PPCPs), bisphenol A (BPA), phthalates, alkylphenols (APs), and perfluoroalkyl and polyfluoroalkyl substances (PFASs) in bottled water from different countries. Also, the findings related to CECs' levels, their possible sources, and their risks are summarized. The gathered data indicate that MPs within the size range of 1-5 µm are the most predominant and potentially toxic classes of MPs in bottled water. In addition, PPCPs, PFASs, APs, and BPA occur in concentration levels of ng/L, while phthalates occur in the µg/L level in bottled water. The bottle type plays an important role in the contamination level. As expected, water in plastic bottles with plastic caps is more polluted than in glass bottles. However, other sources of contamination such as contact materials during cleaning, bottling, and storage are not negligible. Based on the gathered data in this review, the CEC levels except for MPs (no threshold values) in bottled water of most countries do not raise a safety concern for the human. However, the occurrence of individual CECs and their association in bottled water need more accurate data to understand their own/synergistic effects on human health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...