*Sci Adv ; 7(12)2021 Mar.*

##### RESUMEN

Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks. Here, we use a coherently driven quantum dot to experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches: both a 250-m-long single-mode fiber and in free space, connecting two buildings within the campus of Sapienza University in Rome. Our field study highlights that quantum-dot entangled photon sources are ready to go beyond laboratory experiments, thus opening the way to real-life quantum communication.

*Rep Prog Phys ; 84(1): 012402, 2021 Jan.*

##### RESUMEN

Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.

*Opt Express ; 28(24): 35427-35437, 2020 Nov 23.*

##### RESUMEN

Optical interrogation of tissues is broadly considered in biomedical applications. Nevertheless, light scattering by tissue limits the resolution and accuracy achieved when investigating sub-surface tissue features. Light carrying optical angular momentum or complex polarization profiles, offers different propagation characteristics through scattering media compared to light with unstructured beam profiles. Here we discuss the behaviour of structured light scattered by tissue-mimicking phantoms. We study the spatial and the polarization profile of the scattered modes as a function of a range of optical parameters of the phantoms, with varying scattering and absorption coefficients and of different lengths. These results show the non-trivial trade-off between the advantages of structured light profiles and mode broadening, stimulating further investigations in this direction.

##### Asunto(s)

Microscopía de Polarización/métodos , Fantasmas de Imagen , Dispersión de Radiación , Biomimética , Luz , Modelos Biológicos*Phys Rev Lett ; 124(16): 160401, 2020 Apr 24.*

##### RESUMEN

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods-namely, convolutional neural networks and principal component analysis-to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

*Nat Commun ; 11(1): 2467, 2020 May 18.*

##### RESUMEN

The launch of a satellite capable of distributing entanglement through long distances and the first loophole-free violation of Bell inequalities are milestones indicating a clear path for the establishment of quantum networks. However, nonlocality in networks with independent entanglement sources has only been experimentally verified in simple tripartite networks, via the violation of bilocality inequalities. Here, by using a scalable photonic platform, we implement star-shaped quantum networks consisting of up to five distant nodes and four independent entanglement sources. We exploit this platform to violate the chained n-locality inequality and thus witness, in a device-independent way, the emergence of nonlocal correlations among the nodes of the implemented networks. These results open new perspectives for quantum information processing applications in the relevant regime where the observed correlations are compatible with standard local hidden variable models but are non-classical if the independence of the sources is taken into account.

*Sci Rep ; 10(1): 4379, 2020 Mar 04.*

##### RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

*Phys Rev Lett ; 123(23): 230502, 2019 Dec 06.*

##### RESUMEN

Introducing quantum sensors as a solution to real world problems demands reliability and controllability outside of laboratory conditions. Producers and operators ought to be assumed to have limited resources readily available for calibration, and yet, they should be able to trust the devices. Neural networks are almost ubiquitous for similar tasks for classical sensors: here we show the applications of this technique to calibrating a quantum photonic sensor. This is based on a set of training data, collected only relying on the available probe states, hence reducing overhead. We found that covering finely the parameter space is key to achieving uncertainties close to their ultimate level. This technique has the potential to become the standard approach to calibrate quantum sensors.

*Phys Rev Lett ; 123(14): 140501, 2019 Oct 04.*

##### RESUMEN

Many disordered systems show a superdiffusive dynamics, intermediate between the diffusive one, typical of a classical stochastic process, and the so-called ballistic behavior, which is generally expected for the spreading in a quantum process. We have experimentally investigated the superdiffusive behavior of a quantum walk, whose dynamics can be related to energy transport phenomena, with a resolution which is high enough to clearly distinguish between different disorder regimes. By our experimental setup, the region between ballistic and diffusive spreading can be effectively scanned by suitably setting few degrees of freedom and without applying any decoherence to the quantum walk evolution.

*Sci Adv ; 5(3): eaau1946, 2019 Mar.*

##### RESUMEN

The number of parameters describing a quantum state is well known to grow exponentially with the number of particles. This scaling limits our ability to characterize and simulate the evolution of arbitrary states to systems, with no more than a few qubits. However, from a computational learning theory perspective, it can be shown that quantum states can be approximately learned using a number of measurements growing linearly with the number of qubits. Here, we experimentally demonstrate this linear scaling in optical systems with up to 6 qubits. Our results highlight the power of the computational learning theory to investigate quantum information, provide the first experimental demonstration that quantum states can be "probably approximately learned" with access to a number of copies of the state that scales linearly with the number of qubits, and pave the way to probing quantum states at new, larger scales.

*Phys Rev Lett ; 122(13): 130401, 2019 Apr 05.*

##### RESUMEN

The decay of an unstable system is usually described by an exponential law. Quantum mechanics predicts strong deviations of the survival probability from the exponential: Indeed, the decay is initially quadratic, while at very large times it follows a power law, with superimposed oscillations. The latter regime is particularly elusive and difficult to observe. Here we employ arrays of single-mode optical waveguides, fabricated by femtosecond laser direct inscription, to implement quantum systems where a discrete state is coupled and can decay into a continuum. The optical modes correspond to distinct quantum states of the photon, and the temporal evolution of the quantum system is mapped into the spatial propagation coordinate. By injecting coherent light states in the fabricated photonic structures and by measuring a small scattered fraction of such light with an unprecedented dynamic range, we are able to experimentally observe not only the exponential decay regime, but also the quadratic Zeno region and the power-law decay at long evolution times.

*Phys Rev Lett ; 122(1): 013601, 2019 Jan 11.*

##### RESUMEN

Structured photons are nowadays an important resource in classical and quantum optics due to the richness of properties they show under propagation, focusing, and in their interaction with matter. Vectorial modes of light in particular, a class of modes where the polarization varies across the beam profile, have already been used in several areas ranging from microscopy to quantum information. One of the key ingredients needed to exploit the full potential of complex light in the quantum domain is the control of quantum interference, a crucial resource in fields like quantum communication, sensing, and metrology. Here we report a tunable Hong-Ou-Mandel interference between vectorial modes of light. We demonstrate how a properly designed spin-orbit device can be used to control quantum interference between vectorial modes of light by simply adjusting the device parameters and no need of interferometric setups. We believe our result can find applications in fundamental research and quantum technologies based on structured light by providing a new tool to control quantum interference in a compact, efficient, and robust way.

*Sci Rep ; 9(1): 3205, 2019 Mar 01.*

##### RESUMEN

We present a new optical scheme enabling the implementation of highly stable and configurable non-Markovian dynamics. Here one photon qubit can circulate in a multipass bulk geometry consisting of two concatenated Sagnac interferometers to simulate the so called collisional model, where the system interacts at discrete times with a vacuum environment. We show the optical features of our apparatus and three different implementations of it, replicating a pure Markovian scenario and two non-Markovian ones, where we quantify the information backflow by tracking the evolution of the initial entanglement between the system photon and an ancillary one.

*Phys Rev Lett ; 122(6): 063602, 2019 Feb 15.*

##### RESUMEN

Bosonic interference is a fundamental physical phenomenon, and it is believed to lie at the heart of quantum computational advantage. It is thus necessary to develop practical tools to witness its presence, both for a reliable assessment of a quantum source and for fundamental investigations. Here we describe how linear interferometers can be used to unambiguously witness genuine n-boson indistinguishability. The amount of violation of the proposed witnesses bounds the degree of multiboson indistinguishability, for which we also provide a novel intuitive model using set theory. We experimentally implement this test to bound the degree of three-photon indistinguishability in states we prepare using parametric down-conversion. Our approach results in a convenient tool for practical photonic applications, and may inspire further fundamental advances based on the operational framework we adopt.

*Phys Rev Lett ; 122(2): 020503, 2019 Jan 18.*

##### RESUMEN

The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.

*Entropy (Basel) ; 21(8)2019 Aug 06.*

##### RESUMEN

Quantum teleportation is one of the most striking consequence of quantum mechanics and is defined as the transmission and reconstruction of an unknown quantum state over arbitrary distances. This concept was introduced for the first time in 1993 by Charles Bennett and coworkers, it has then been experimentally demonstrated by several groups under different conditions of distance, amount of particles and even with feed forward. After 20 years from its first realization, this contribution reviews the experimental implementations realized at the Quantum Optics Group of the University of Rome La Sapienza.

*Rep Prog Phys ; 82(1): 016001, 2019 01.*

##### RESUMEN

Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

*Phys Rev Lett ; 121(17): 173901, 2018 Oct 26.*

##### RESUMEN

In this work, we experimentally show that quantum entanglement can be symmetry protected in the interaction with a single subwavelength plasmonic nanoaperture, with a total volume of Vâ¼0.2λ^{3}. In particular, we experimentally demonstrate that two-photon entanglement can be either completely preserved or completely lost after the interaction with the nanoaperture, solely depending on the relative phase between the quantum states. We achieve this effect by using specially engineered two-photon states to match the properties of the nanoaperture. In this way we can access a symmetry protected state, i.e., a state constrained by the geometry of the interaction to retain its entanglement. In spite of the small volume of interaction, we show that the symmetry protected entangled state retains its main properties. This connection between nanophotonics and quantum optics probes the fundamental limits of the phenomenon of quantum interference.

*Phys Rev Lett ; 121(14): 140501, 2018 Oct 05.*

##### RESUMEN

Quantum teleportation establishes a correspondence between an entangled state shared by two separate parties that can communicate classically and the presence of a quantum channel connecting the two parties. The standard benchmark for quantum teleportation, based on the average fidelity between the input and output states, indicates that some entangled states do not lead to channels which can be certified to be quantum. It was recently shown that if one considers a finer-grained witness, then all entangled states can be certified to produce a nonclassical teleportation channel. Here we experimentally demonstrate a complete characterization of a new family of such witnesses, of the type proposed in Phys. Rev. Lett. 119, 110501 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.110501 under different conditions of noise. We report nonclassical teleportation using quantum states that cannot achieve average fidelity of teleportation above the classical limit. We further use the violation of these witnesses to estimate the negativity of the shared state. Our results have fundamental implications in quantum information protocols and may also lead to new applications and quality certification of quantum technologies.

*Sci Adv ; 4(4): eaao6814, 2018 04.*

##### RESUMEN

Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.