Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Evol Appl ; 17(3): e13664, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38487391

RESUMEN

Adverse, postnatal conditions experienced during development are known to induce lingering effects on morphology, behaviour, reproduction and survival. Despite the importance of early developmental stress for shaping the adult phenotype, it is largely unknown which molecular mechanisms allow for the induction and maintenance of such phenotypic effects once the early environmental conditions are released. Here we aimed to investigate whether lasting early developmental phenotypic changes are associated with post-developmental DNA methylation changes. We used a cross-foster and brood size experiment in great tit (Parus major) nestlings, which induced post-fledging effects on biometric measures and exploratory behaviour, a validated personality trait. We investigated whether these post-fledging effects are associated with DNA methylation levels of CpG sites in erythrocyte DNA. Individuals raised in enlarged broods caught up on their developmental delay after reaching independence and became more explorative as days since fledging passed, while the exploratory scores of individuals that were raised in reduced broods remained stable. Although we previously found that brood enlargement hardly affected the pre-fledging methylation levels, we found 420 CpG sites that were differentially methylated between fledged individuals that were raised in small versus large sized broods. A considerable number of the affected CpG sites were located in or near genes involved in metabolism, growth, behaviour and cognition. Since the biological functions of these genes line up with the observed post-fledging phenotypic effects of brood size, our results suggest that DNA methylation provides organisms the opportunity to modulate their condition once the environmental conditions allow it. In conclusion, this study shows that nutritional stress imposed by enlarged brood size during early development associates with variation in DNA methylation later in life. We propose that treatment-associated DNA methylation differences may arise in relation to pre- or post-fledging phenotypic changes, rather than that they are directly induced by the environment during early development.

2.
Mol Ecol ; 32(14): 3960-3974, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37154074

RESUMEN

The environment experienced during early life is a crucial factor in the life of many organisms. This early life environment has been shown to have profound effects on morphology, physiology and fitness. However, the molecular mechanisms that mediate these effects are largely unknown, even though they are essential for our understanding of the processes that induce phenotypic variation in natural populations. DNA methylation is an epigenetic mechanism that has been suggested to explain such environmentally induced phenotypic changes early in life. To investigate whether DNA methylation changes are associated with experimentally induced early developmental effects, we cross-fostered great tit (Parus major) nestlings and manipulated their brood sizes in a natural study population. We assessed experimental brood size effects on pre-fledging biometry and behaviour. We linked this to genome-wide DNA methylation levels of CpG sites in erythrocyte DNA, using 122 individuals and an improved epiGBS2 laboratory protocol. Brood enlargement caused developmental stress and negatively affected nestling condition, predominantly during the second half of the breeding season, when conditions are harsher. Brood enlargement, however, affected nestling DNA methylation in only one CpG site and only if the hatch date was taken into account. In conclusion, this study shows that nutritional stress in enlarged broods does not associate with direct effects on genome-wide DNA methylation. Future studies should assess whether genome-wide DNA methylation variation may arise later in life as a consequence of phenotypic changes during early development.


Asunto(s)
Metilación de ADN , Passeriformes , Humanos , Animales , Metilación de ADN/genética , Passeriformes/genética , Passeriformes/anatomía & histología , Cruzamiento , ADN
3.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37039566

RESUMEN

As environmental fluctuations are becoming more common, organisms need to rapidly adapt to anthropogenic, climatic, and ecological changes. Epigenetic modifications and DNA methylation in particular provide organisms with a mechanism to shape their phenotypic responses during development. Studies suggest that environmentally induced DNA methylation might allow for adaptive phenotypic plasticity that could last throughout an organism's lifetime. Despite a number of studies demonstrating environmentally induced DNA methylation changes, we know relatively little about what proportion of the epigenome is affected by environmental factors, rather than being a consequence of genetic variation. In the current study, we use a partial cross-foster design in a natural great tit (Parus major) population to disentangle the effects of common origin from common rearing environment on DNA methylation. We found that variance in DNA methylation in 8,315 CpG sites was explained by a common origin and only in 101 by a common rearing environment. Subsequently, we mapped quantitative trait loci for the brood of origin CpG sites and detected 754 cis and 4,202 trans methylation quantitative trait loci, involving 24% of the CpG sites. Our results indicate that the scope for environmentally induced methylation marks independent of the genotype is limited and that the majority of variation in DNA methylation early in life is determined by genetic factors instead. These findings suggest that there may be little opportunity for selection to act on variation in DNA methylation. This implies that most DNA methylation variation likely does not evolve independently of genomic changes.


Asunto(s)
Metilación de ADN , Passeriformes , Animales , Epigénesis Genética , Sitios de Carácter Cuantitativo , Genotipo , Passeriformes/genética , Islas de CpG , Variación Genética
4.
Neurosci Biobehav Rev ; 150: 105194, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37094740

RESUMEN

Animal personality, consistent individual differences in behaviour, is an important concept for understanding how individuals vary in how they cope with environmental challenges. In order to understand the evolutionary significance of animal personality, it is crucial to understand the underlying regulatory mechanisms. Epigenetic marks such as DNA methylation are hypothesised to play a major role in explaining variation in phenotypic changes in response to environmental alterations. Several characteristics of DNA methylation also align well with the concept of animal personality. In this review paper, we summarise the current literature on the role that molecular epigenetic mechanisms may have in explaining personality variation. We elaborate on the potential for epigenetic mechanisms to explain behavioural variation, behavioural development and temporal consistency in behaviour. We then suggest future routes for this emerging field and point to potential pitfalls that may be encountered. We conclude that a more inclusive approach is needed for studying the epigenetics of animal personality and that epigenetic mechanisms cannot be studied without considering the genetic background.


Asunto(s)
Conducta Animal , Personalidad , Animales , Conducta Animal/fisiología , Personalidad/genética , Individualidad , Epigénesis Genética , Evolución Biológica
5.
Mol Ecol Resour ; 23(7): 1488-1508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35466564

RESUMEN

The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Humanos , Reproducibilidad de los Resultados , Vertebrados/genética , Ecología
6.
Mol Ecol Resour ; 22(5): 2087-2104, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35178872

RESUMEN

Several reduced-representation bisulfite sequencing methods have been developed in recent years to determine cytosine methylation de novo in nonmodel species. Here, we present epiGBS2, a laboratory protocol based on epiGBS with a revised and user-friendly bioinformatics pipeline for a wide range of species with or without a reference genome. epiGBS2 is cost- and time-efficient and the computational workflow is designed in a user-friendly and reproducible manner. The library protocol allows a flexible choice of restriction enzymes and a double digest. The bioinformatics pipeline was integrated in the Snakemake workflow management system, which makes the pipeline easy to execute and modular, and parameter settings for important computational steps flexible. We implemented bismark for alignment and methylation analysis and we preprocessed alignment files by double masking to enable single nucleotide polymorphism calling with Freebayes (epiFreebayes). The performance of several critical steps in epiGBS2 was evaluated against baseline data sets from Arabidopsis thaliana and great tit (Parus major), which confirmed its overall good performance. We provide a detailed description of the laboratory protocol and an extensive manual of the bioinformatics pipeline, which is publicly accessible on github (https://github.com/nioo-knaw/epiGBS2) and zenodo (https://doi.org/10.5281/zenodo.4764652).


Asunto(s)
Programas Informáticos , Sulfitos , Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
7.
Integr Comp Biol ; 60(6): 1517-1530, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33031487

RESUMEN

The search for the hereditary mechanisms underlying quantitative traits traditionally focused on the identification of underlying genomic polymorphisms such as single-nucleotide polymorphisms. It has now become clear that epigenetic mechanisms, such as DNA methylation, can consistently alter gene expression over multiple generations. It is unclear, however, if and how DNA methylation can stably be transferred from one generation to the next and can thereby be a component of the heritable variation of a trait. In this study, we explore whether DNA methylation responds to phenotypic selection using whole-genome and genome-wide bisulfite approaches. We assessed differential erythrocyte DNA methylation patterns between extreme personality types in the Great Tit (Parus major). For this, we used individuals from a four-generation artificial bi-directional selection experiment and siblings from eight F2 inter-cross families. We find no differentially methylated sites when comparing the selected personality lines, providing no evidence for the so-called epialleles associated with exploratory behavior. Using a pair-wise sibling design in the F2 intercrosses, we show that the genome-wide DNA methylation profiles of individuals are mainly explained by family structure, indicating that the majority of variation in DNA methylation in CpG sites between individuals can be explained by genetic differences. Although we found some candidates explaining behavioral differences between F2 siblings, we could not confirm this with a whole-genome approach, thereby confirming the absence of epialleles in these F2 intercrosses. We conclude that while epigenetic variation may underlie phenotypic variation in behavioral traits, we were not able to find evidence that DNA methylation can explain heritable variation in personality traits in Great Tits.


Asunto(s)
Metilación de ADN , Pájaros Cantores , Animales , Islas de CpG , Epigénesis Genética , Conducta Exploratoria , Personalidad/genética , Pájaros Cantores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...