Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Más filtros

Base de datos
Intervalo de año de publicación
J Phys Condens Matter ; 31(43): 435401, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31300631


We investigate the spin relaxation under conditions of optical excitation between the Rydberg orbital states of phosphorus donor impurities in silicon. Here we show that the spin relaxation is less than a few percent, even after multiple excitation/relaxation cycles. The observed high level of spin preservation may be useful for readout cycling or in quantum information schemes where coupling of neighbor qubits is via orbital excitation.

J Phys Condens Matter ; 29(32): 325502, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28685711


Static and time-resolved mid-infrared spectroscopy of ferromagnetic single crystal Hg0.95Cd0.05Cr2Se4 was performed below the absorption edge, in order to reveal the origin of the electronic transitions contributing to the magneto-optical properties of this material. The mid-infrared spectroscopy reveals a strong absorption peak around 0.236 eV which formerly was assigned to a transition within the selenide-chromium complexes ([Formula: see text] Se-Cr2+). To reveal the sensitivity of the transition to the magnetic order, we performed the studies in a temperature range across the Curie temperature and magnetic fields across the value at which the saturation of ferromagnetic magnetization occurs. Despite the fact that the Curie temperature of this ferromagnetic semiconductor is around 107 K, the intensity of the mid-infrared transition reduces substantially increasing the temperature, so that already at 70 K the absorption peak is hardly visible. Such a dramatic decrease of the oscillator strength is observed simultaneously with the strong red-shift of the absorption edge in the magnetic semiconductor. Employing a time-resolved pump-and-probe technique enabled us to determine the lifetime of the electrons in the excited state of this optical transition. In the temperature range from 7 K to 80 K, the lifetime changes from 3 ps to 6 ps. This behavior agrees with the phenomenon of giant oscillator strength described earlier for weakly bound excitons in nonmagnetic semiconductors.

Nat Commun ; 8: 16038, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28737173


Superposition of orbital eigenstates is crucial to quantum technology utilizing atoms, such as atomic clocks and quantum computers, and control over the interaction between atoms and their neighbours is an essential ingredient for both gating and readout. The simplest coherent wavefunction control uses a two-eigenstate admixture, but more control over the spatial distribution of the wavefunction can be obtained by increasing the number of states in the wavepacket. Here we demonstrate THz laser pulse control of Si:P orbitals using multiple orbital state admixtures, observing beat patterns produced by Zeeman splitting. The beats are an observable signature of the ability to control the path of the electron, which implies we can now control the strength and duration of the interaction of the atom with different neighbours. This could simplify surface code networks which require spatially controlled interaction between atoms, and we propose an architecture that might take advantage of this.

Nat Commun ; 6: 6549, 2015 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-25790967


The ability to control dynamics of quantum states by optical interference, and subsequent electrical read-out, is crucial for solid state quantum technologies. Ramsey interference has been successfully observed for spins in silicon and nitrogen vacancy centres in diamond, and for orbital motion in InAs quantum dots. Here we demonstrate terahertz optical excitation, manipulation and destruction via Ramsey interference of orbital wavepackets in Si:P with electrical read-out. We show milliradian control over the wavefunction phase for the two-level system formed by the 1s and 2p states. The results have been verified by all-optical echo detection methods, sensitive only to coherent excitations in the sample. The experiments open a route to exploitation of donors in silicon for atom trap physics, with concomitant potential for quantum computing schemes, which rely on orbital superpositions to, for example, gate the magnetic exchange interactions between impurities.

Nat Mater ; 13(2): 151-6, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24240243


Over the past few years, single-photon generation has been realized in numerous systems: single molecules, quantum dots, diamond colour centres and others. The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics and measurement theory. An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing. Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite-vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (2×10(6) counts s(-1)) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices.

Phys Rev Lett ; 100(17): 177402, 2008 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-18518336


Dramatic reductions of the linewidths of well-known deep centers in 28Si reveal "isotopic fingerprints" of the constituents. The approximately 1014 meV Cu center, thought to be either a Cu pair or an isolated Cu, is shown to contain four Cu atoms, and the approximately 780 meV Ag center is shown to contain four Ag. The approximately 944 meV ;{*}Cu center, thought to be a different configuration of a Cu pair, in fact contains three Cu and one Ag, and a new two-Cu two-Ag center is found. The approximately 735 meV center, previously assigned to Fe, actually contains Au and three Cu. This suggests a family of four-atom (Cu, Ag, Au) centers.