Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Microorganisms ; 9(2)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669791

RESUMEN

The skin microbiota of atopic dermatitis (AD) patients is characterized by increased Staphylococcus aureus colonization, which exacerbates disease symptoms and has been linked to reduced bacterial diversity. Skin bacterial communities in AD patients have mostly been described at family and genus levels, while species-level characterization has been limited. In this study, we investigated the role of the bacteria belonging to the Staphylococcus genus using targeted sequencing of the tuf gene with genus-specific primers. We compared staphylococcal communities on lesional and non-lesional skin of AD patients, as well as AD patients with healthy controls, and determined the absolute abundance of bacteria present at each site. We observed that the staphylococcal community, bacterial alpha diversity, and bacterial densities were similar on lesional and non-lesional skin, whereas AD severity was associated with significant changes in staphylococcal composition. Increased S. aureus, Staphylococcus capitis, and Staphylococcus lugdunensis abundances were correlated with increased severity. Conversely, Staphylococcus hominis abundance was negatively correlated with severity. Furthermore, S. hominis relative abundance was reduced on AD skin compared to healthy skin. In conclusion, various staphylococcal species appear to be important for skin health.

2.
PLoS Pathog ; 17(2): e1009304, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33544760

RESUMEN

S. epidermidis is a substantial component of the human skin microbiota, but also one of the major causes of nosocomial infection in the context of implanted medical devices. We here aimed to advance the understanding of S. epidermidis genotypes and phenotypes conducive to infection establishment. Furthermore, we investigate the adaptation of individual clonal lines to the infection lifestyle based on the detailed analysis of individual S. epidermidis populations of 23 patients suffering from prosthetic joint infection. Analysis of invasive and colonizing S. epidermidis provided evidence that invasive S. epidermidis are characterized by infection-supporting phenotypes (e.g. increased biofilm formation, growth in nutrient poor media and antibiotic resistance), as well as specific genetic traits. The discriminating gene loci were almost exclusively assigned to the mobilome. Here, in addition to IS256 and SCCmec, chromosomally integrated phages was identified for the first time. These phenotypic and genotypic features were more likely present in isolates belonging to sequence type (ST) 2. By comparing seven patient-matched nasal and invasive S. epidermidis isolates belonging to identical genetic lineages, infection-associated phenotypic and genotypic changes were documented. Besides increased biofilm production, the invasive isolates were characterized by better growth in nutrient-poor media and reduced hemolysis. By examining several colonies grown in parallel from each infection, evidence for genetic within-host population heterogeneity was obtained. Importantly, subpopulations carrying IS insertions in agrC, mutations in the acetate kinase (AckA) and deletions in the SCCmec element emerged in several infections. In summary, these results shed light on the multifactorial processes of infection adaptation and demonstrate how S. epidermidis is able to flexibly repurpose and edit factors important for colonization to facilitate survival in hostile infection environments.

3.
Microb Genom ; 7(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33439116

RESUMEN

There is increased awareness of the worldwide spread of specific epidemic multidrug-resistant (MDR) lineages of the human commensal Staphylococcus epidermidis. Here, using bioinformatic analyses accounting for population structure, we determined genomic traits (genes, SNPs and k-mers) that distinguish S. epidermidis causing prosthetic-joint infections (PJIs) from commensal isolates from nares, by analysing whole-genome sequencing data from S. epidermidis from PJIs prospectively collected over 10 years in Sweden, and contemporary S. epidermidis from the nares of patients scheduled for arthroplasty surgery. Previously suggested virulence determinants and the presence of genes and mutations linked to antimicrobial resistance (AMR) were also investigated. Publicly available S. epidermidis sequences were used for international extrapolation and validation of findings. Our data show that S. epidermidis causing PJIs differed from nasal isolates not by virulence but by traits associated with resistance to compounds used in prevention of PJIs: ß-lactams, aminoglycosides and chlorhexidine. Almost a quarter of the PJI isolates did not belong to any of the previously described major nosocomial lineages, but the AMR-related traits were also over-represented in these isolates, as well as in international S. epidermidis isolates originating from PJIs. Genes previously associated with virulence in S. epidermidis were over-represented in individual lineages, but failed to reach statistical significance when adjusted for population structure. Our findings suggest that the current strategies for prevention of PJIs select for nosocomial MDR S. epidermidis lineages that have arisen from horizontal gene transfer of AMR-related traits into multiple genetic backgrounds.

4.
Microorganisms ; 9(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33513900

RESUMEN

We investigated Staphylococcus aureus diversity, genetic factors, and humoral immune responses against antigens via genome analysis of S. aureus isolates from chronic rhinosinusitis (CRS) patients in a long-term follow-up. Of the 42 patients who provided S. aureus isolates and serum for a previous study, 34 could be included for follow-up after a decade. Clinical examinations were performed and bacterial samples were collected from the maxillary sinus and nares. S. aureus isolates were characterized by whole-genome sequencing, and specific anti-staphylococcal IgG in serum was determined using protein arrays. S. aureus was detected in the nares and/or maxillary sinus at both initial inclusion and follow-up in 15 of the 34 respondents (44%). Three of these (20%) had S. aureus isolates from the same genetic lineage as at inclusion. A low number of single-nucleotide polymorphisms (SNPs) were identified when comparing isolates from nares and maxillary sinus collected at the same time point. The overall change of antibody responses to staphylococcal antigens over time showed great variability, and no correlation was found between the presence of genes encoding antigens and the corresponding anti-staphylococcal IgG in serum; thus our findings did not support a role, in CRS, of the specific S. aureus antigens investigated.

5.
Food Microbiol ; 93: 103603, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32912578

RESUMEN

Staphylococcus aureus is an opportunistic pathogen leading to food poisoning as well as human infections. The present study examined the prevalence and characterization of antimicrobial-resistant S. aureus in sushi from 42 outlets and in pork products from eight outlets in Beijing, China. The total bacterial counts were between 3.0 and 8.9 log CFU/g (mean 5.5 ± 1.5 log CFU/g) in sushi products and 4.8 to 7.4 log CFU/g (mean 5.6 ± 0.8 log CFU/g) in pork products. The mean counts of coliforms were 2.7 and 2.9 log CFU/g in sushi and pork, respectively. Staphylococcus aureus was isolated from seven sushi outlets (13 isolates) and two pork outlets (2 isolates) with average counts below 2 log CFU/g in all cases. A total of 15 S. aureus isolates were further characterized. Six lineages of S. aureus were present, including ST398 (n = 5), ST25 (n = 4), ST15 (n = 2), ST59 (n = 2), ST8 (n = 1) and ST2631 (n = 1). Thirteen isolates contained the scn virulence marker, whereas four and eight isolates contained the virulence marker edinB and enterotoxin genes, respectively. Characterization of antimicrobial resistance profiles documented resistances to ampicillin (n = 15), penicillin (n = 14), ceftazidime (n = 6), erythromycin (n = 4), tetracycline (n = 3), clindamycin (n = 3), and gentamicin (n = 1). Three MRSA isolates were obtained, one from pork (ST398) and two from one sushi outlet (ST59). They were all resistant to at least three classes of antimicrobials and two of them contained the scn gene and enterotoxin genes. Twelve sushi isolates and one of the pork isolates contained the scn gene, indicating that they were of human origin. This emphasizes the potential importance of transmission through foods of antimicrobial-resistant S. aureus including MRSA. We also showed that S. aureus exhibited geographical variation with regards to ST profiles, antimicrobial-resistance and virulence genes when comparing isolates from sushi products sold in Beijing and Copenhagen, Denmark. Whereas food safety is not compromised by the presence of low amounts of S. aureus in sushi, this study shows that with regards to public health such foods may serve as vehicles for transmission of multidrug-resistant S. aureus and MRSA lineages.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Microbiología de Alimentos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Animales , Beijing , China/epidemiología , Enterotoxinas/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Humanos , Carne/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Alimentos Marinos/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/aislamiento & purificación
6.
Sci Rep ; 10(1): 22389, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33372186

RESUMEN

Staphylococcus capitis is a coagulase-negative staphylococcus that has been described primarily as causing bloodstream infections in neonatal intensive care units (NICUs), but has also recently been described in prosthetic joint infections (PJIs). The multidrug-resistant S. capitis subsp. urealyticus clone NRCS-A, comprising three sublineages, is prevalent in NICUs across the world, but its impact on other patient groups such as those suffering from PJIs or among adults planned for arthroplasty is unknown. Genome sequencing and subsequent analysis were performed on a Swedish collection of PJI isolates (n = 21), nasal commensals from patients planned to undergo arthroplasty (n = 20), NICU blood isolates (n = 9), operating theatre air isolates (n = 4), and reference strains (n = 2), in conjunction with an international strain collection (n = 248). The NRCS-A Outbreak sublineage containing the composite type V SCCmec-SCCcad/ars/cop element was present in PJIs across three Swedish hospitals. However, it was not found among nasal carrier strains, where the less virulent S. capitis subsp. capitis was most prevalent. The presence of the NRCS-A Outbreak clone in adult patients with PJIs demonstrates that dissemination occurs beyond NICUs. As this clone has several properties which facilitate invasive infections in patients with medical implants or immunosuppression, such as biofilm forming ability and multidrug resistance including heterogeneous glycopeptide-intermediate susceptibility, further research is needed to understand the reservoirs and distribution of this hospital-associated pathogen.


Asunto(s)
Biopelículas , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Prótesis Articulares/microbiología , Infecciones Estafilocócicas , Staphylococcus capitis/aislamiento & purificación , Staphylococcus capitis/fisiología , Adulto , Artroplastia , Femenino , Humanos , Masculino , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/genética , Suecia/epidemiología
7.
BMC Microbiol ; 20(1): 362, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243146

RESUMEN

BACKGROUND: Although generally known as a human commensal, Staphylococcus epidermidis is also an opportunistic pathogen that can cause nosocomial infections related to foreign body materials and immunocompromized patients. Infections are often caused by multidrug-resistant (MDR) lineages that are difficult and costly to treat, and can have a major adverse impact on patients' quality of life. Heterogeneity is a common phenomenon in both carriage and infection, but present methodology for detection of this is laborious or expensive. In this study, we present a culture-independent method, labelled Epidome, based on an amplicon sequencing-approach to deliver information beyond species level on primary samples and to elucidate clonality, population structure and temporal stability or niche selection of S. epidermidis communities. RESULTS: Based on an assessment of > 800 genes from the S. epidermidis core genome, we identified genes with variable regions, which in combination facilitated the differentiation of phylogenetic clusters observed in silico, and allowed classification down to lineage level. A duplex PCR, combined with an amplicon sequencing protocol, and a downstream analysis pipeline were designed to provide subspecies information from primary samples. Additionally, a probe-based qPCR was designed to provide valuable absolute abundance quantification of S. epidermidis. The approach was validated on isolates representing skin commensals and on genomic mock communities with a sensitivity of < 10 copies/µL. The method was furthermore applied to a sample set of primary skin and nasal samples, revealing a high degree of heterogeneity in the S. epidermidis populations. Additionally, the qPCR showed a high degree of variation in absolute abundance of S. epidermidis. CONCLUSIONS: The Epidome method is designed for use on primary samples to obtain important information on S. epidermidis abundance and diversity beyond species-level to answer questions regarding the emergence and dissemination of nosocomial lineages, investigating clonality of S. epidermidis communities, population dynamics, and niche selection. Our targeted-sequencing method allows rapid differentiation and identification of clinically important nosocomial lineages in low-biomass samples such as skin samples.

8.
Vet Microbiol ; 250: 108850, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33011663

RESUMEN

The aim of this study was to investigate antimicrobial resistance and population structure of bovine mastitis-associated Staphylococcus aureus isolates, and compare them to human isolates obtained from Western Australian hospitals and overseas strains to determine relatedness to human isolates from a zoonotic or reverse zoonotic aspect. Antimicrobial susceptibility testing was performed on 202 S. aureus isolates of which 166 isolates underwent whole genome sequencing. Only resistance to penicillin (12.4%) and erythromycin (0.5%) was identified and of note, no resistance was demonstrated to oxacillin. Genomic characterisation identified 14 multilocus sequence types (STs), with most isolates belonging to clonal complexes 97, 705, and 1. Four distinct clades based on virulence gene composition were identified. The four clades were predominantly ST based, consisting of ST352, ST97, ST81/ST1, and ST705. Core genome comparison of the bovine and human S. aureus isolates demonstrated defined clustering by ST, with the Australian bovine S. aureus isolates clustering together according to their ST separately from human isolates. In addition, a bovine specific cluster comprising Australian ST151 and ST705 isolates, and ST151 isolates from Irish dairy cattle was clearly delineated. Examination of a detailed ST352 phylogeny provided evidence for geographical clustering of Australian strains into a distinct grouping separate from international strains. This study has identified Australian S. aureus isolates have limited genetic diversity and are genetically distinct from human and international bovine S. aureus isolates. Current first line therapies for bovine mastitis in Australian dairy cattle remain appropriate.

9.
Sci Rep ; 10(1): 16553, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024212

RESUMEN

A retrospective study of Staphylococcus aureus isolates from orthopaedic patients treated between 2000 and 2017 at Akershus University Hospital, Norway was performed using a genome-wide association approach. The aim was to characterize and investigate molecular characteristics unique to S. aureus isolates from HHA associated prosthetic joint infections and potentially explain the HHA patients' elevated 1-year mortality compared to a non-HHA group. The comparison group consisted of patients with non-HHA lower-extremity implant-related S. aureus infections. S. aureus isolates from diagnostic patient samples were whole-genome sequenced. Univariate and multivariate analyses were performed to detect group-associated genetic signatures. A total of 62 HHA patients and 73 non-HHA patients were included. Median age (81 years vs. 74 years; p < 0.001) and 1-year mortality (44% vs. 15%, p < 0.001) were higher in the HHA group. A total of 20 clonal clusters (CCs) were identified; 75% of the isolates consisted of CC45, CC30, CC5, CC15, and CC1. Analyses of core and accessory genome content, including virulence, resistance genes, and k-mer analysis revealed few group-associated variants, none of which could explain the elevated 1-year mortality in HHA patients. Our findings support the premise that all S. aureus can cause invasive infections given the opportunity.

10.
Emerg Infect Dis ; 26(11)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33079052

RESUMEN

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) can acquire phage-encoded immune modulators, such as the immune evasion cluster (IEC), which protects bacteria from components of the human innate immune system, and the enzyme TarP, which protects against antibody-mediated immune recognition. We used whole-genome sequencing and epidemiologic investigations to study the effects of IEC- and tarP-harboring phages on household transmission of LA-MRSA in North Denmark Region during 2004-2011. We reviewed information about all patients throughout Denmark who experienced LA-MRSA infection during 2007-2018 to determine whether IEC is associated with increased spread into the general population. Horizontal acquisition of IEC in the human host was associated with increased household transmission of LA-MRSA and spillover into the community and healthcare settings, whereas we found no evidence to suggest that IEC-positive LA-MRSA isolates have become self-sustainable in the general population. By contrast, TarP did not seem to influence household transmission of LA-MRSA.

11.
J Glob Antimicrob Resist ; 23: 221-223, 2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33039598

RESUMEN

OBJECTIVES: To report the complete genome sequence of a methicillin-resistant Staphylococcus vitulinus from ground beef to allow comparison with other available S. vitulinus genomes and to investigate its SCCmec element. METHODS: Meat samples from grocery stores in Denmark were examined for the presence of staphylococcal species by plating on selective plates. One colony isolated from beef was identified as S. vitulinus by MALDI-TOF and genome sequenced using a combination of Illumina and Oxford Nanopore technologies. Phylogenetic and in silico resistome analyses were performed for all available S. vitulinus genomes. RESULTS: The closed genome of S. vitulinus Tienloo1 isolate had a chromosome size of 2,628,028 bp and contained a single novel 2,380 bp plasmid based on a hybrid assembly. It carried mecA as the only resistance marker. The isolate was found not to carry any immune evasion cluster genes, which have been putatively associated to human origin. Comparison with all publicly available S. vitulinus draft genomes showed a diverse population and revealed that only the Danish beef isolate contained a mec gene in addition to a ccr gene complex. Additionally, the single ccrC gene within the isolate was novel and distant from the mecA2 gene. CONCLUSION: This isolate, Tienloo1, from a ground beef meat sample represents the first complete genome of S. vitulinus found to carry a mecA2 gene and a novel ccr allotype in its SCCmec element that is distinct from all publicly available draft S. vitulinus genomes.

12.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32801178

RESUMEN

Globally, gulls have been associated with carriage of high levels of Escherichia coli strains resistant to critically important antimicrobials (CIAs), a major concern, as these antimicrobials are the sole alternative or one among only a few alternatives available to treat severe life-threatening infections in humans. Previous studies of Australian silver gulls demonstrated high levels of resistance to CIAs, particularly fluoroquinolone and extended-spectrum cephalosporins, among E. coli strains (carriage at 24% and 22%, respectively). This study aimed to identify and characterize strains from four distinct bird species inhabiting a common coastal environment, determine the frequency of carriage of CIA-resistant E. coli strains, and examine if these resistant clones and their resistance-encoding mobile genetic elements (MGEs) could be transmitted between species. CIA-resistant E. coli was detected in silver gulls (53%), little penguins (11%), and feral pigeons (10%), but not in bridled terns. In total, 37 different sequence types (STs) were identified, including clinically significant human-associated lineages, such as ST131, ST95, ST648, ST69, ST540, ST93, ST450, and ST10. Five main mobile genetic elements associated with bla CTX-M-positive E. coli strains isolated from three bird species were detected. Examination of clonal lineages and MGEs provided indirect evidence of transfer of resistance between bird species. The carriage of CIA-resistant E. coli by gulls and pigeons with proximity to humans, and in some instances food-producing animals, increases the likelihood of further bidirectional dissemination.IMPORTANCE It has been shown that 20% of Australian silver gulls carry drug-resistant Escherichia coli strains of anthropogenic origin associated with severe diseases, such as sepsis and urinary tract infections, in humans. To further characterize the dynamics of drug-resistant E. coli in wildlife populations, we investigated the carriage of critically important antimicrobial (CIA) drug-resistant E. coli in four bird species in a common environment. Our results indicated that gulls, pigeons, and penguins carried drug-resistant E. coli strains, and analysis of mobile genetic elements associated with resistance genes indicated interspecies resistance transfer. Terns, representing a bird species that forages on natural food sources at sea and distant from humans, did not test positive for drug-resistant E. coli This study demonstrates carriage of CIA-resistant bacteria in multiple bird species living in areas commonly inhabited by humans and provides further evidence for a leapfrog effect of resistance in wildlife, facilitated by feeding habits.

13.
Emerg Infect Dis ; 26(8): 1951-1954, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32687033

RESUMEN

Escherichia coli sequence type (ST) 131 is of concern because it can acquire antimicrobial resistance and cause extraintestinal infections. E. coli ST131-H22 sublineage appears capable of being transmitted to humans through poultry. We report on multidrug-resistant ST131-H22 poultry isolates in Brazil closely related to international human and poultry isolates.

14.
mSphere ; 5(4)2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32611695

RESUMEN

Since the late 1990s, changes in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) were recognized with the emergence of community-associated MRSA (CA-MRSA). CA-MRSA belonging to clonal complex 152 (CC152), carrying the small staphylococcal cassette chromosome mec (SCCmec) type V and encoding the Panton-Valentine leukocidin (PVL), has been observed in Europe. The aim of this study was to investigate its origin, evolution, and dissemination. Whole-genome sequencing was performed on a global collection of 149 CC152 isolates spanning 20 years (93 methicillin-susceptible S. aureus [MSSA] and 56 MRSA isolates). Core genome phylogeny, Bayesian inference, in silico resistance analyses, and genomic characterization were applied. Phylogenetic analysis revealed two major distinct clades, one dominated by MSSA and the other populated only by MRSA. The MSSA isolates were predominately from sub-Saharan Africa, whereas MRSA was almost exclusively from Europe. The European MRSA isolates all harbored an SCCmec type V (5C2&5) element, whereas other SCCmec elements were sporadically detected in MRSA from the otherwise MSSA-dominated clade, including SCCmec types IV (2B), V (5C2), and XIII (9A). In total, 93% of the studied CC152 isolates were PVL positive. Bayesian coalescent inference suggests an emergence of the European CC152-MRSA in the 1990s, while the CC152 lineage dates back to the 1970s. The CA-MRSA CC152 clone mimics the European CC80 CA-MRSA lineage by its emergence from a PVL-positive MSSA ancestor from North Africa or Europe. The CC152 lineage has acquired SCCmec several times, but acquisition of SCCmec type V (5C2&5) seems associated with expansion of MRSA CC152 in Europe.IMPORTANCE Understanding the evolution of CA-MRSA is important in light of the increasing importance of this reservoir in the dissemination of MRSA. Here, we highlight the story of the CA-MRSA CC152 lineage using whole-genome sequencing on an international collection of CC152. We show that the evolution of this lineage is novel and that antibiotic usage may have the potential to select for the phage-encoded Panton-Valentine leukocidin. The diversity of the strains correlated highly to geography, with higher level of resistance observed among the European MRSA isolates. The mobility of the SCCmec element is mandatory for the emergence of novel MRSA lineages, and we show here distinct acquisitions, one of which is linked to the successful clone found throughout Europe today.

15.
Microb Genom ; 6(8)2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32667872

RESUMEN

Staphylococcus aureus is a colonizing opportunistic pathogen and a leading cause of bloodstream infection with high morbidity and mortality. S. aureus carriage frequency is reportedly between 20 and 40 % among healthy adults, with S. aureus colonization considered to be a risk factor for S. aureus bacteraemia. It is unknown whether a genetic component of the bacterium is associated with S. aureus bacteraemia in comparison to nasal carriage strains. Previous association studies primarily focusing on the clinical outcome of an S. aureus infection have produced conflicting results, often limited by study design challenged by sample collections and the clonal diversity of S. aureus. To date, no study has investigated whether genomic features separate nasal carriage isolates from S. aureus bacteraemia isolates within a single clonal lineage. Here we have investigated whether genomic features, including single-nucleotide polymorphisms (SNPs), genes, or kmers, distinguish S. aureus nasal carriage isolates from bacteraemia isolates that all belong to the same clonal lineage [clonal complex 45 (CC45)] using whole-genome sequencing (WGS) and a genome-wide association (GWA) approach. From CC45, 100 isolates (50 bacteraemia and 50 nasal carriage, geographically and temporally matched) from Denmark were whole-genome sequenced and subjected to GWA analyses involving gene copy number variation, SNPs, gene content, kmers and gene combinations, while correcting for lineage effects. No statistically significant association involving SNPs, specific genes, gene variants, gene copy number variation, or a combination of genes was identified that could distinguish bacteraemia isolates from nasal carriage isolates. The presented results suggest that all S. aureus nasal CC45 isolates carry the potential to cause invasive disease, as no core or accessory genome content or variations were statistically associated with invasiveness.

16.
J Bone Jt Infect ; 5(4): 172-175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670770

RESUMEN

This report presents a case of prosthetic hip infection caused by Staphylococcus argenteus, a potentially overlooked etiology of prosthetic joint infections (PJIs). Whole-genome sequencing showed that the S. argenteus isolate was an ST2250 and clustered within other CC2250 isolates, the largest clonal group of S. argenteus. This sequence type is prevalent and may be associated with invasive infections. The present isolate was phenotypically fully susceptible to all tested antimicrobial agents and genome analysis did not detect any resistance genes, nor were any staphylococcal cassette chromosome residues detected. Despite initial appropriate management with debridement and biofilm-active antibiotics, the outcome was unfavorable with recurrence and a persistent infection treated with suppressive antibiotics. Regarding the repertoire of genomic traits for virulence in S. argenteus, PJIs caused by this bacterium should be treated accordingly as Staphylococcus aureus PJIs.

17.
Vet Microbiol ; 245: 108705, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32456821

RESUMEN

More than 55 million mink skins were produced globally in 2017. As a consequence, a large number of people are employed in mink production worldwide. In Denmark, farmed mink were found to constitute a reservoir of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 and 6000 mink farm workers in Denmark are potentially exposed to LA-MRSA CC398. The study aim was to elucidate the source of LA-MRSA CC398 in mink farms and to investigate possible transmission to humans. In total, 161 LA-MRSA CC398 isolates from mink (n = 65), mink feed (n = 16) and humans (n = 80) with reported contact to mink, were whole-genome sequenced and compared to 183 LA-MRSA CC398 isolates from Danish pigs and an international collection of 89 S. aureus CC398 isolates. Most of the mink-associated isolates clustered within the predominant LA-MRSA CC398 lineages circulating in the Danish pig production, supporting that pigs are a source of LA-MRSA CC398 in mink feed, mink, and mink farmers.

18.
Appl Environ Microbiol ; 86(13)2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32358001

RESUMEN

Livestock-associated methicillin-resistant Staphylococcus aureus sequence type (ST) 398 (LA-MRSA ST398) is a genetic lineage for which pigs are regarded as the main reservoir. An increasing prevalence of LA-MRSA ST398 has been reported in areas with high livestock density throughout Europe. In this study, we investigated the drivers contributing to the introduction and spread of LA-MRSA ST398 through the pig farming system in southern Italy. Whole-genome sequencing (WGS) of LA-MRSA ST398 isolates collected in 2018 from pigs (n = 53) and employees (n = 14) from 10 farms in the Calabria region of Italy were comparatively analyzed with previously published WGS data from Italian ST398 isolates (n = 45), an international ST398 reference collection (n = 89), and isolates from Danish pig farms (n = 283), which are the main suppliers of pigs imported to Italy. Single-nucleotide polymorphisms (SNP) were used to infer isolate relatedness, and these data were used together with data from animal trading to identify factors contributing to LA-MRSA ST398 dissemination. The analyses support the existence of two concurrent pathways for the spread of LA-MRSA ST398 in southern Italy: (i) multiple introductions of LA-MRSA ST398 through the import of colonized pigs from other European countries, including Denmark and France, and (ii) the spread of distinct clones dependent on local trading of pigs between farms. Phylogenetically related Italian and Danish LA-MRSA ST398 isolates shared extensive similarities, including carriage of antimicrobial resistance genes. Our findings highlight the potential risk of transboundary transmission of antimicrobial-resistant bacterial clones with a high zoonotic potential during import of pigs from countries with high LA-MRSA prevalence.IMPORTANCE Over the past decade, livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 (LA-MRSA ST398) has spread among pig holdings throughout Europe, in parallel with the increased incidence of infections among humans, especially in intensive pig farming regions. Despite the growing prevalence of LA-MRSA ST398 in Italian pig farms, the transmission dynamics of this clone in Italy remains unclear. This work provides genome-based evidence to suggest transboundary LA-MRSA ST398 transmission through trading of colonized pigs between European countries and Italy, as well as between farms in the same Italian region. Our findings show that both international trading and local trading of colonized pigs are important factors contributing to the global spread of LA-MRSA ST398 and underscore the need for control measures on and off the farm to reduce the dissemination of this zoonotic pathogen.


Asunto(s)
Comercio , Infecciones Estafilocócicas/veterinaria , Enfermedades de los Porcinos/transmisión , Crianza de Animales Domésticos/economía , Animales , Italia , Staphylococcus aureus Resistente a Meticilina/fisiología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/transmisión , Sus scrofa , Porcinos , Enfermedades de los Porcinos/microbiología
19.
mBio ; 11(3)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32430467

RESUMEN

Escherichia coli sequence type 131 (ST131) is a major cause of urinary and bloodstream infections. Its association with extended-spectrum ß-lactamases (ESBLs) significantly complicates treatment. Its best-described component is the rapidly expanding H30Rx clade, containing allele 30 of the type 1 fimbrial adhesin gene fimH This lineage appears to have emerged in the United States and spread around the world in part due to the acquisition of the ESBL-encoding bla CTX-M-15 gene and resistance to fluoroquinolones. However, non-H30 ST131 sublineages with other acquired CTX-M-type resistance genes are also emerging. Based on whole-genome analyses, we describe here the presence of an (fimH) H27 E. coli ST131 sublineage that has recently caused an outbreak of community-acquired bacteremia and recurrent urinary tract infections (UTIs) in Denmark. This sublineage has acquired both a virulence plasmid (pAA) that defines the enteroaggregative E. coli (EAEC) diarrheagenic pathotype and multiple genes associated with extraintestinal E. coli (ExPEC); combined, these traits have made this particular ST131 sublineage successful at colonizing its human host and causing recurrent UTI. Moreover, using a historic World Health Organization (WHO) E. coli collection and publicly available genome sequences, we identified a global H27 EAEC ST131 sublineage that dates back as far as 1998. Most H27 EAEC ST131 isolates harbor pAA or pAA-like plasmids, and our analysis strongly implies a single ancestral acquisition among these isolates. These findings illustrate both the profound plasticity of this important pathogenic E. coli ST131 H27 sublineage and genetic acquisitions of EAEC-specific virulence traits that likely confer an enhanced ability to cause intestinal colonization.IMPORTANCE E. coli ST131 is an important extraintestinal pathogenic lineage. A signature characteristic of ST131 is its ability to asymptomatically colonize the gastrointestinal tract and then opportunistically cause extraintestinal infections, such as cystitis, pyelonephritis, and urosepsis. In this study, we identified an ST131 H27 sublineage that has acquired the enteroaggregative diarrheagenic phenotype, spread across multiple continents, and caused multiple outbreaks of community-acquired ESBL-associated bloodstream infections in Denmark. The strain's ability to both cause diarrhea and innocuously colonize the human gastrointestinal tract may facilitate its dissemination and establishment in the community.

20.
J Glob Antimicrob Resist ; 22: 527-532, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32439567

RESUMEN

OBJECTIVE: Epidemic methicillin-resistant Staphylococcus aureus (MRSA) clones have been described in Ghana, but so far, no typical livestock-associated MRSA isolates (CC398) have been found. In this study we provide baseline information on antimicrobial resistance, population structure, and virulence gene content of S. aureus isolates from livestock and farm attendants. METHODS: Nasal samples were collected from cattle, pigs, goats, sheep, and farm attendants from three farms. Staphylococcus aureus was identified by matrix-assisted laser desorption/ionisation time-of-flight and antimicrobial susceptibility testing was performed using VITEK II (Biomerieux, Marcy l'Etoile, France) and interpreted according to EUCAST guidelines. Whole-genome sequencing was performed using the Illumina, San Diego, CA, USA MiSeq Platform. RESULTS: In total, 401 nasal swab samples were obtained from 57 farm attendants, 208 pigs, 30 goats, 26 sheep, and 80 cattle. The S. aureus isolates (n = 25) recovered (farm attendants: n = 10; pigs: n = 8; and goats: n = 7) were frequently resistant to penicillin (68%), tetracycline (44%), and ciprofloxacin (32%); two human isolates were MRSA. Twelve isolates (48%) were multidrug resistant (MDR) (>3 classes). Genome sequencing of the isolates revealed ST152-t355, ST9-t1430, and ST133-t8662 as dominant clones among farm attendants, pigs, and goats, respectively. The two MRSA isolates detected belonged to ST8-t334 and ST152-t355. The scn and sak genes associated with human-adaption were detected in 10 isolates; 9 from humans and 1 from a goat. Typing results provided evidence of a single potential transmission event (t861, PVL-, scn+). CONCLUSION: No MRSA was detected among livestock, perhaps because of low intensive farming; however, the relatively high prevalence of MDR isolates may be a result of inappropriate antibiotic usage in Ghanaian livestock production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...