Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1232: 3-9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893387

RESUMEN

Neonates with hypoxic-ischaemic (HI) brain injury were monitored using a broadband near-infrared spectroscopy (NIRS) system in the neonatal intensive care unit. The aim of this work is to use the NIRS cerebral oxygenation data (HbD = oxygenated-haemoglobin - deoxygenated-haemoglobin) combined with arterial saturation (SaO2) from pulse oximetry to calculate cerebral blood flow (CBF) based on the oxygen swing method, during spontaneous desaturation episodes. The method is based on Fick's principle and uses HbD as a tracer; when a sudden change in SaO2 occurs, the change in HbD represents a change in tracer concentration, and thus it is possible to estimate CBF. CBF was successfully calculated with broadband NIRS in 11 HIE infants (3 with severe injury) for 70 oxygenation events on the day of birth. The average CBF was 18.0 ± 12.7 ml 100 g-1 min-1 with a range of 4 ml 100 g-1 min-1 to 60 ml 100 g-1 min-1. For infants with severe HIE (as determined by magnetic resonance spectroscopy) CBF was significantly lower (p = 0.038, d = 1.35) than those with moderate HIE on the day of birth.


Asunto(s)
Lesiones Encefálicas , Encéfalo , Circulación Cerebrovascular , Oximetría , Oxígeno , Espectroscopía Infrarroja Corta , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Lesiones Encefálicas/diagnóstico por imagen , Humanos , Recién Nacido , Oximetría/instrumentación , Oximetría/métodos , Oxígeno/metabolismo
2.
Adv Exp Med Biol ; 1232: 25-31, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893390

RESUMEN

Hypoxic ischemic encephalopathy (HIE) leads to significant mortality and morbidity, and therapeutic hypothermia (TH) has become a standard of care following HIE. After TH, the body temperature is brought back to 37 °C. Early electroencephalography (EEG) is a reliable outcome biomarker following HIE. We hypothesized that changes in cerebral oxidative metabolism, measured as Δ[oxCCO], in relation to changes in brain tissue oxygenation (measured as Δ[HbD]) during rewarming will correlate with injury severity as evidenced on amplitude integrated EEG/EEG at initial presentation. Broadband near-infrared spectroscopy (NIRS) and systemic data were collected during rewarming from 14 infants following HIE over a mean period of 12.5 h. All infants were monitored with video EEG telemetry using a standard neonatal montage. aEEG and EEG background was classified into mild, moderate and severely abnormal groups based on the background pattern. Two infants had mild, 6 infants had moderate and another 6 infants had severe abnormality at presentation. The relationship between [oxCCO] and [HbD] was evaluated between two groups of infants with abnormal electrical activity (mild vs moderate to severe). A significant difference was noted between the groups in the relationship between [oxCCO] and [HbD] (as r2) (p = 0.02). This result indicates that the mitochondrial injury and deranged oxidative metabolism persists in the moderate to severely abnormal group during rewarming.


Asunto(s)
Electroencefalografía , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Biomarcadores/análisis , Encéfalo/metabolismo , Humanos , Hipoxia-Isquemia Encefálica/diagnóstico , Lactante , Recién Nacido , Recalentamiento
3.
Adv Exp Med Biol ; 1232: 299-306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31893424

RESUMEN

Hypoxic ischemic encephalopathy (HIE) is a significant cause of death and neurological disability in newborns. Therapeutic hypothermia at 33.5 °C is one of the most common treatments in HIE and generally improves outcome; however 45-55% of injuries still result in death or severe neurodevelopmental disability. We have developed a systems biology model of cerebral oxygen transport and metabolism to model the impact of hypothermia on the piglet brain (the neonatal preclinical animal model) tissue physiology. This computational model is an extension of the BrainSignals model of the adult brain. The model predicts that during hypothermia there is a 5.1% decrease in cerebral metabolism, 1.1% decrease in blood flow and 2.3% increase in cerebral tissue oxygenation saturation. The model can be used to simulate effects of hypothermia on the brain and to help interpret bedside recordings.


Asunto(s)
Circulación Cerebrovascular , Cerebro , Hipotermia , Modelos Biológicos , Animales , Animales Recién Nacidos , Circulación Cerebrovascular/fisiología , Cerebro/metabolismo , Simulación por Computador , Humanos , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Porcinos
4.
Paediatr Anaesth ; 30(1): 4-5, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31863627
5.
Neurophotonics ; 6(4): 045009, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31737744

RESUMEN

We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin ( [ HbO 2 ] ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation ( Δ [ HbDiff ] = Δ [ HbO 2 ] - Δ [ HHb ] ), blood volume ( Δ [ HbT ] = Δ [ HbO 2 ] + Δ [ HHb ] ), and metabolism ( Δ [ oxCCO ] ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton ( H 1 ) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ [ oxCCO ] -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed ( p < 0.0001 ) between the two groups based on this cut-off threshold of 79% Δ [ oxCCO ] -RF. The severe injury group ( n = 13 ) had ∼ 30 % smaller recovery in Δ [ HbDiff ] -RF ( p = 0.0001 ) and no significant difference was observed in Δ [ HbT ] -RF between groups. At 48 h post HI, significantly higher P 31 -MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) ( p = 0.01 ) and reduced phosphocreatine/epp ( p = 0.003 ) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult.

6.
Biomed Opt Express ; 10(9): 4621-4635, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31565513

RESUMEN

Time-resolved near-infrared spectroscopy (TR-NIRS) measurements can be used to recover changes in concentrations of tissue constituents ( Δ C ) by applying the moments method and the Beer-Lambert law. In this work we carried out the error propagation analysis allowing to calculate the standard deviations of uncertainty in estimation of the Δ C . Here, we show the process of choosing wavelengths for the evaluation of hemodynamic (oxy-, deoxyhemoglobin) and metabolic (cytochrome-c-oxidase (CCO)) responses within the brain tissue as measured with an in-house developed TR-NIRS multi-wavelength system, which measures at 16 consecutive wavelengths separated by 12.5 nm and placed between 650 and 950 nm. Data generated with Monte Carlo simulations on three-layered model (scalp, skull, brain) for wavelengths range from 650 to 950 nm were used to carry out the error propagation analysis for varying choices of wavelengths. For a detector with a spectrally uniform responsivity, the minimal standard deviation of the estimated changes in CCO within the brain layer, σ Δ C CCO brain = 0.40 µM, was observed for the 16 consecutive wavelengths from 725 to 912.5 nm. For realistic a detector model, i.e. the spectral responsivity characteristic is considered, the minimum, σ Δ C CCO brain = 0.47 µM, was observed at the 16 consecutive wavelengths from 688 to 875 nm. We introduce the method of applying the error propagation analysis to data as measured with spectral TR-NIRS systems to calculate uncertainty of recovery of tissue constituents concentrations.

7.
Sci Rep ; 9(1): 10184, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308390

RESUMEN

Co-existing infection/inflammation and birth asphyxia potentiate the risk of developing neonatal encephalopathy (NE) and adverse outcome. In a newborn piglet model we assessed the effect of E. coli lipopolysaccharide (LPS) infusion started 4 h prior to and continued for 48 h after hypoxia on brain cell death and systemic haematological changes compared to LPS and hypoxia alone. LPS sensitized hypoxia resulted in an increase in mortality and in brain cell death (TUNEL positive cells) throughout the whole brain, and in the internal capsule, periventricular white matter and sensorimotor cortex. LPS alone did not increase brain cell death at 48 h, despite evidence of neuroinflammation, including the greatest increases in microglial proliferation, reactive astrocytosis and cleavage of caspase-3. LPS exposure caused splenic hypertrophy and platelet count suppression. The combination of LPS and hypoxia resulted in the highest and most sustained systemic white cell count increase. These findings highlight the significant contribution of acute inflammation sensitization prior to an asphyxial insult on NE illness severity.

8.
Pediatr Res ; 86(6): 699-708, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31357208

RESUMEN

BACKGROUND: Neuroprotection from therapeutic hypothermia (HT) is incomplete, therefore additional strategies are necessary to improve long-term outcomes. We assessed the neuroprotective efficacy of magnesium sulfate (MgSO4) bolus and infusion over 48 h plus HT in a piglet model of term neonatal encephalopathy (NE). METHODS: Fifteen newborn piglets were randomized following hypoxia-ischemia (HI) to: (i) MgSO4 180 mg/kg bolus and 8 mg/kg/h infusion with HT (Mg+HT) or (ii) HT and saline 0.5 ml/h (HT). Treatments were initiated 1 h post-HI; HT administered for 12 h (33.5 °C). HI was performed by transient carotid occlusion and inhalation of 6% O2 for 20-25 min. Primary outcomes included aEEG, magnetic resonance spectroscopy (MRS) at 24, and 48 h, and immunohistochemistry. RESULTS: MgSO4 bolus and infusion was well tolerated (no hypotension) and doubled serum magnesium (0.72 vs 1.52 mmol/L) with modest (16%) rise in CSF. In Mg+HT compared to HT, there was overall reduced cell death (p = 0.01) and increased oligodendrocytes (p = 0.002). No improvement was seen on aEEG recovery (p = 0.084) or MRS (Lac/NAA; PCr/Pi; NTP/epp) (p > 0.05) at 48 h. CONCLUSION: Doubling serum magnesium with HT was safe; however, the small incremental benefit of Mg+HT compared to HT is unlikely to translate into substantive long-term improvement. Such an incremental effect might justify further study of MgSO4 in combination with multiple therapies.

9.
PLoS Comput Biol ; 15(4): e1006631, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31026277

RESUMEN

Systems biology models are used to understand complex biological and physiological systems. Interpretation of these models is an important part of developing this understanding. These models are often fit to experimental data in order to understand how the system has produced various phenomena or behaviour that are seen in the data. In this paper, we have outlined a framework that can be used to perform Bayesian analysis of complex systems biology models. In particular, we have focussed on analysing a systems biology of the brain using both simulated and measured data. By using a combination of sensitivity analysis and approximate Bayesian computation, we have shown that it is possible to obtain distributions of parameters that can better guard against misinterpretation of results, as compared to a maximum likelihood estimate based approach. This is done through analysis of simulated and experimental data. NIRS measurements were simulated using the same simulated systemic input data for the model in a 'healthy' and 'impaired' state. By analysing both of these datasets, we show that different parameter spaces can be distinguished and compared between different physiological states or conditions. Finally, we analyse experimental data using the new Bayesian framework and the previous maximum likelihood estimate approach, showing that the Bayesian approach provides a more complete understanding of the parameter space.


Asunto(s)
Teorema de Bayes , Encéfalo , Modelos Neurológicos , Biología de Sistemas/métodos , Adulto , Algoritmos , Encéfalo/irrigación sanguínea , Encéfalo/fisiología , Circulación Cerebrovascular/fisiología , Humanos , Oxígeno/metabolismo
10.
J Cereb Blood Flow Metab ; 39(1): 118-130, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-28949271

RESUMEN

Hypoxic ischemic encephalopathy (HIE) leads to significant morbidity and mortality. Impaired autoregulation after hypoxia-ischaemia has been suggested to contribute further to injury. Thalamic lactate/N-Acetylasperate (Lac/NAA) peak area ratio of > 0.3 on proton (1H) magnetic resonance spectroscopy (MRS) is associated with poor neurodevelopment outcome following HIE. Cytochrome-c-oxidase (CCO) plays a central role in mitochondrial oxidative metabolism and ATP synthesis. Using a novel broadband NIRS system, we investigated the impact of pressure passivity of cerebral metabolism (CCO), oxygenation (haemoglobin difference (HbD)) and cerebral blood volume (total haemoglobin (HbT)) in 23 term infants following HIE during therapeutic hypothermia (HT). Sixty-minute epochs of data from each infant were studied using wavelet analysis at a mean age of 48 h. Wavelet semblance (a measure of phase difference) was calculated to compare reactivity between mean arterial blood pressure (MABP) with oxCCO, HbD and HbT. OxCCO-MABP semblance correlated with thalamic Lac/NAA ( r = 0.48, p = 0.02). OxCCO-MABP semblance also differed between groups of infants with mild to moderate and severe injury measured using brain MRI score ( p = 0.04), thalamic Lac/NAA ( p = 0.04) and neurodevelopmental outcome at one year ( p = 0.04). Pressure passive changes in cerebral metabolism were associated with injury severity indicated by thalamic Lac/NAA, MRI scores and neurodevelopmental assessment at one year of age.


Asunto(s)
Encéfalo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/biosíntesis , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Presión Sanguínea , Circulación Cerebrovascular , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/etiología , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Homeostasis , Humanos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Recién Nacido , Ácido Láctico/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Tálamo/metabolismo
11.
IEEE J Sel Top Quantum Electron ; 25(1): 7100312, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30450021

RESUMEN

We present a multiwavelength, multichannel, time-domain near-infrared spectroscopy system named MAESTROS. This instrument can measure absorption and scattering coefficients and can quantify the concentrations of oxy- and deoxy-haemoglobin ([HbO2], [HHb]), and oxidation state of cytochrome-c-oxidase ([oxCCO]). This system is composed of a supercontinuum laser source coupled with two acousto-optic tuneable filters. The light is collected by four photomultipliers tubes, connected to a router to redirect the signal to a single time-correlated single-photon counting card. The interface between the system and the tissue is based on optical fibres. This arrangement allows us to resolve up to 16 wavelengths, within the range of 650-900 nm, at a sampling rate compatible with the physiology (from 0.5 to 2 Hz). In this paper, we describe the system and assess its performance based on two specifically designed protocols for photon migration instruments, the basic instrument protocol and nEUROPt protocols, and on a well characterized liquid phantom based on Intralipid and water. Then, the ability to resolve [HbO2 ], [HHb], and [oxCCO] is demonstrated on a homogeneous liquid phantom, based on blood for [HbO2], [HHb], and yeast for [oxCCO]. In the future, the system could be used to monitor brain tissue physiology.

12.
J Cereb Blood Flow Metab ; 39(10): 2035-2047, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29775114

RESUMEN

There is a need for a method of real-time assessment of brain metabolism during neonatal hypoxic-ischaemic encephalopathy (HIE). We have used broadband near-infrared spectroscopy (NIRS) to monitor cerebral oxygenation and metabolic changes in 50 neonates with HIE undergoing therapeutic hypothermia treatment. In 24 neonates, 54 episodes of spontaneous decreases in peripheral oxygen saturation (desaturations) were recorded between 6 and 81 h after birth. We observed differences in the cerebral metabolic responses to these episodes that were related to the predicted outcome of the injury, as determined by subsequent magnetic resonance spectroscopy derived lactate/N-acetyl-aspartate. We demonstrated that a strong relationship between cerebral metabolism (broadband NIRS-measured cytochrome-c-oxidase (CCO)) and cerebral oxygenation was associated with unfavourable outcome; this is likely to be due to a lower cerebral metabolic rate and mitochondrial dysfunction in severe encephalopathy. Specifically, a decrease in the brain tissue oxidation state of CCO greater than 0.06 µM per 1 µM brain haemoglobin oxygenation drop was able to predict the outcome with 64% sensitivity and 79% specificity (receiver operating characteristic area under the curve = 0.73). With further work on the implementation of this methodology, broadband NIRS has the potential to provide an early, cotside, non-invasive, clinically relevant metabolic marker of perinatal hypoxic-ischaemic injury.

13.
Front Hum Neurosci ; 12: 371, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30333736

RESUMEN

It has been 20 years since functional near-infrared spectroscopy (fNIRS) was first used to investigate the evoked hemodynamic response to a stimulus in newborns. The hemodynamic response to functional activation is well-established in adults, with an observed increase in concentration change of oxygenated hemoglobin (Δ[HbO2]) and decrease in deoxygenated hemoglobin (Δ[HHb]). However, functional studies in newborns have revealed a mixed response, particularly with Δ[HHb] where an inconsistent change in direction is observed. The reason for this heterogeneity is unknown, with potential explanations arising from differing physiology in the developing brain, or differences in instrumentation or methodology. The aim of this review is to collate the findings from studies that have employed fNIRS to monitor cerebral hemodynamics in term newborn infants aged 1 day-1 month. A total of 46 eligible studies were identified; some studies investigated more than one stimulus type, resulting in a total of 51 reported results. The NIRS parameters reported varied across studies with 50/51 cases reporting Δ[HbO2], 39/51 reporting Δ[HHb], and 13/51 reporting total hemoglobin concentration Δ[HbT] (Δ[HbO2] + Δ[HHb]). However, of the 39 cases reporting Δ[HHb] in graphs or tables, only 24 studies explicitly discussed the response (i.e., direction of change) of this variable. In the studies where the fNIRS responses were discussed, 46/51 cases observed an increase in Δ[HbO2], 7/51 observed an increase or varied Δ[HHb], and 2/51 reported a varied or negative Δ[HbT]. An increase in Δ[HbO2] and decrease or no change in Δ[HHb] was observed in 15 studies. By reviewing this body of literature, we have identified that the majority of research articles reported an increase in Δ[HbO2] across various functional tasks and did not report the response of Δ[HHb]. Confirming the normal, healthy hemodynamic response in newborns will allow identification of unhealthy patterns and their association to normal neurodevelopment.

14.
Biomed Opt Express ; 9(6): 2588-2603, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30258675

RESUMEN

Preterm infants born with very low birth weights are at a high risk of brain injury, in part because the premature brain is believed to be prone to periods of low cerebral blood flow (CBF). Tissue damage is likely to occur if reduction in CBF is sufficient to impair cerebral energy metabolism for extended periods. Therefore, a neuromonitoring method that can detect reductions in CBF, large enough to affect metabolism, could alert the neonatal intensive care team before injury occurs. In this report, we present the development of an optical system that combines diffuse correlation spectroscopy (DCS) for monitoring CBF and broadband near-infrared spectroscopy (B-NIRS) for monitoring the oxidation state of cytochrome c oxidase (oxCCO) - a key biomarker of oxidative metabolism. The hybrid instrument includes a multiplexing system to enable concomitant DCS and B-NIRS measurements while avoiding crosstalk between the two subsystems. The ability of the instrument to monitor dynamic changes in CBF and oxCCO was demonstrated in a piglet model of neonatal hypoxia-ischemia (HI). Experiments conducted in eight animals, including two controls, showed that oxCCO exhibited a delayed response to ischemia while CBF and tissue oxygenation (StO2) responses were instantaneous. These findings suggest that simultaneous neuromonitoring of perfusion and metabolism could provide critical information regarding clinically significant hemodynamic events prior to the onset of brain injury.

15.
Adv Exp Med Biol ; 1072: 13-20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178317

RESUMEN

Hyperspectral imaging (HSI) systems have the potential to retrieve in vivo hemodynamic and metabolic signals from the exposed cerebral cortex. The use of multiple narrow wavelength bands in the near infrared (NIR) range theoretically allows not only to image brain tissue oxygenation and hemodynamics via mapping of hemoglobin concentration changes, but also to directly quantify cerebral metabolism via measurement of the redox states of mitochondrial cytochrome-c-oxidase (CCO). The aim of this study is to assess the possibility of performing hyperspectral imaging of in vivo cerebral oxyhemoglobin (HbO2), deoxyhemoglobin (HHb) and oxidized CCO (oxCCO) using commercially available HSI devices. For this reason, a hyperspectral snapshot solution based on Cubert GmbH technology (S185 FireflEYE camera) has been tested on the exposed cortex of mice during normoxic, hypoxic and hyperoxic conditions. The system allows simultaneous acquisition of 138 wavelength bands between 450 and 998 nm, with spectral sampling and resolution of ~4 to 8 nm. From the hyperspectral data, relative changes in concentration of hemoglobin and oxCCO are estimated and hemodynamic and metabolic maps of the imaged cortex are calculated for two different NIR spectral ranges. Spectroscopic analysis at particular regions of interest is also performed, showing typical oxygen-dependent hemodynamic responses. The results highlight some of the potentials of the technology, but also the limitations of the tested commercial solution for such specific application, in particular regarding spatial resolution.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos , Animales , Complejo IV de Transporte de Electrones/análisis , Complejo IV de Transporte de Electrones/metabolismo , Hemodinámica/fisiología , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Ratones
16.
Adv Exp Med Biol ; 1072: 151-156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178338

RESUMEN

Perinatal hypoxic ischaemic (HI) encephalopathy is associated with severe neurodevelopment problems and mortality. This study uses broadband continuous-wave near-infrared spectroscopy (NIRS) to assess the early changes in cerebral oxygenation and metabolism after HI injury in an animal model using controlled anoxia events. Anoxia was induced before and 1 h after various levels of HI injury to assess the metabolic response via the changes in the oxidation state of cytochrome-c-oxidase (oxCCO), a marker of oxidative metabolism. The oxCCO responses to anoxia were classified into five categories: increase, no change, decrease, biphasic and triphasic responses. The most common response (54%) was a biphasic decrease in oxCCO. A change in the classification of the metabolic response to anoxia after HI injury indicated a severe injury, as determined by proton magnetic resonance spectroscopy, with 86% sensitivity. This shows that broadband NIRS can identify disturbances to cerebral metabolism in the first hours after severe HI injury.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia/metabolismo , Espectroscopía Infrarroja Corta/métodos , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Consumo de Oxígeno/fisiología , Porcinos
17.
Adv Exp Med Biol ; 1072: 319-324, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30178365

RESUMEN

Artefacts are a common and unwanted aspect of any measurement process, especially in a clinical environment, with multiple causes such as environmental changes or motion. In near-infrared spectroscopy (NIRS), there are several existing methods that can be used to identify and remove artefacts to improve the quality of collected data.We have developed a novel Automatic Broadband Artefact Detection (ABroAD) process, using machine learning methods alongside broadband NIRS data to detect common measurement artefacts using the broadband intensity spectrum. Data were collected from eight subjects, using a broadband NIRS monitoring over the frontal lobe with two sensors. Six different artificial artefacts - vertical head movement, horizontal head movement, frowning, pressure, ambient light, torch light - were simulated using movement and light changes on eight subjects in a block test design. It was possible to identify both light artefacts to a good degree, as well as pressure artefacts. This is promising and, by expanding this work to larger datasets, it may be possible to create and train a machine learning pipeline to automate the detection of various artefacts, making the analysis of collected data more reliable.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Aprendizaje Automático , Espectroscopía Infrarroja Corta/métodos , Humanos , Procesamiento de Señales Asistido por Computador
18.
Ann N Y Acad Sci ; 2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30085354

RESUMEN

The past few decades have seen a rapid increase in the use of functional near-infrared spectroscopy (fNIRS) in cognitive neuroscience. This fast growth is due to the several advances that fNIRS offers over the other neuroimaging modalities such as functional magnetic resonance imaging and electroencephalography/magnetoencephalography. In particular, fNIRS is harmless, tolerant to bodily movements, and highly portable, being suitable for all possible participant populations, from newborns to the elderly and experimental settings, both inside and outside the laboratory. In this review we aim to provide a comprehensive and state-of-the-art review of fNIRS basics, technical developments, and applications. In particular, we discuss some of the open challenges and the potential of fNIRS for cognitive neuroscience research, with a particular focus on neuroimaging in naturalistic environments and social cognitive neuroscience.

19.
J Opt ; 20(4): 044009, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29854375

RESUMEN

Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.

20.
Soc Neurosci ; 13(2): 214-225, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28125328

RESUMEN

Previous studies have shown right parietal activation in response to observing irrational actions. Behavioral studies show that people sometimes imitate irrational actions, a phenomenon called overimitation. However, limitations on movement in functional magnetic resonance imaging (fMRI) mean that the neural basis of overimitation has not been studied. To address this, our study employed a less restrictive neuroimaging technique, functional near-infrared spectroscopy (fNIRS). Measurements were taken while participants observed either rational or irrational movements before performing movements on a computerized puzzle task. Observing irrational actions produced greater activation in right anterior inferior parietal lobule (aIPL), replicating results from the fMRI literature. This is a proof of principle that fNIRS can be used as an alternative to fMRI in social cognition experiments, and that parietal cortex has a core role in responding to irrational actions.


Asunto(s)
Conducta Imitativa/fisiología , Percepción de Movimiento/fisiología , Actividad Motora/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Espectroscopía Infrarroja Corta , Adolescente , Adulto , Femenino , Mano/fisiología , Humanos , Masculino , Pruebas Neuropsicológicas , Solución de Problemas/fisiología , Prueba de Estudio Conceptual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA