Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Más filtros

Base de datos
Intervalo de año de publicación
Neurotox Res ; 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141427


Cadmium (Cd) is a heavy metal of considerable toxicity, inducing a number of hazardous effects to humans and animals including neurotoxicity. This experiment was aimed to investigate the potential effect of kaempferol (KPF) against Cd-induced cortical injury. Thirty-two adult Sprague-Dawley rats were divided equally into four groups. The control rats intraperitoneally (i.p.) injected with physiological saline (0.9% NaCl), the cadmium chloride (CdCl2)-treated rats were i.p. injected with 4.5 mg/kg of CdCl2, the KPF-treated rats were orally gavaged with 50 mg/kg of KPF, and the KPF + CdCl2-treated rats were administered orally 50 mg/kg of KPF 120 min before receiving i.p. injection of 4.5 mg/kg CdCl2. CdCl2 exposure for 30 days led to the accumulation of Cd in the cortical tissue, accompanied by a reduction in the content of monoamines and acetylcholinesterase activity. Additionally, CdCl2 induced a state of oxidative stress as evidenced by the elevation of lipid peroxidation and nitrate/nitrite levels, while glutathione content and the activities of glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase were decreased. Moreover, CdCl2 mediated inflammatory events in the cortical tissue through increasing tumor necrosis factor-alpha and interleukin-1 beta levels and upregulating the expression of inducible nitric oxide synthase. Furthermore, pro-apoptotic proteins (Bax and caspase-3) were elevated, while Bcl-2, the anti-apoptotic protein, was decreased. Also, histological alterations were observed obviously following CdCl2. However, KPF pretreatment restored significantly the examined markers to be near the normal values. Hence, the obtained data provide evidences that KPF pretreatment has the protective effect to preserve the cortical tissues in CdCl2-exposed rats by restraining oxidative stress, inflammatory response, apoptosis, neurochemical modulation, and improving the histological changes.

IUBMB Life ; 72(10): 2121-2132, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32710811


Sepsis results from a major systemic inflammatory response and can induce disorders in multiple organs. The present study evaluated the potential protective effects of oleuropein (OLE) against hyperinflammatory responses during lipopolysaccharide (LPS)-induced sepsis in mice. Sixty male Balb/c mice were randomly categorized into five groups of 12 animals each: control, intraperitoneally injected with OLE (50 mg/kg), injected with LPS (10 mg/kg, intraperitoneal), and two groups administered OLE (25 and 50 mg/kg) for 3 days prior to LPS injection. Twenty-four hours after lipopolysaccharide injection, the animals were sacrificed. Serum, liver, and kidney tissue samples were collected for biochemical analyses, histopathological examinations, and investigation of inflammation-related gene expression. OLE pretreatment significantly reduced liver damage parameters (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase) and kidney damage parameters (blood urea nitrogen, creatinine, and kidney injury molecule-1) in the septic mice. OLE pretreatment ameliorated LPS-induced liver and kidney histological changes. OLE significantly mitigated the increased levels of malondialdehyde in the liver and kidneys and reduced levels of reduced glutathione induced by LPS. LPS injection also resulted in increased expression of the proinflammatory cytokines (TNF-α, IL-1ß, and IL-6) and inflammation-related genes (Nos2, Hmgb1, Mpo, Cd46, Map2k4, and Map2k7) in the hepatic and renal tissues. OLE reduced these expressions to ameliorate the inflammatory response. Moreover, OLE pretreatment enhanced the survival rate of septic mice. In conclusion, OLE alleviated the inflammatory response to protect against LPS-induced sepsis in mice.