Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Más filtros

Base de datos
Intervalo de año de publicación
Genes Nutr ; 9(3): 403, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24760553


Micronutrient research typically focuses on analyzing the effects of single or a few nutrients on health by analyzing a limited number of biomarkers. The observational study described here analyzed micronutrients, plasma proteins, dietary intakes, and genotype using a systems approach. Participants attended a community-based summer day program for 6-14 year old in 2 years. Genetic makeup, blood metabolite and protein levels, and dietary differences were measured in each individual. Twenty-four-hour dietary intakes, eight micronutrients (vitamins A, D, E, thiamin, folic acid, riboflavin, pyridoxal, and pyridoxine) and 3 one-carbon metabolites [homocysteine (Hcy), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH)], and 1,129 plasma proteins were analyzed as a function of diet at metabolite level, plasma protein level, age, and sex. Cluster analysis identified two groups differing in SAM/SAH and differing in dietary intake patterns indicating that SAM/SAH was a potential marker of nutritional status. The approach used to analyze genetic association with the SAM/SAH metabolites is called middle-out: SNPs in 275 genes involved in the one-carbon pathway (folate, pyridoxal/pyridoxine, thiamin) or were correlated with SAM/SAH (vitamin A, E, Hcy) were analyzed instead of the entire 1M SNP data set. This procedure identified 46 SNPs in 25 genes associated with SAM/SAH demonstrating a genetic contribution to the methylation potential. Individual plasma metabolites correlated with 99 plasma proteins. Fourteen proteins correlated with body mass index, 49 with group age, and 30 with sex. The analytical strategy described here identified subgroups for targeted nutritional interventions.

OMICS ; 12(4): 263-72, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19040372


Personal and public health information are often obtained from studies of large population groups. Risk factors for nutrients, toxins, genetic variation, and more recently, nutrient-gene interactions are statistical estimates of the percentage reduction in disease in the population if the risk were to be avoided or the gene variant were not present. Because individuals differ in genetic makeup, lifestyle, and dietary patterns than those individuals in the study population, these risk factors are valuable guidelines, but may not apply to individuals. Intervention studies are likewise limited by small sample sizes, short time frames to assess physiological changes, and variable experimental designs that often preclude comparative or consensus analyses. A fundamental challenge for nutrigenomics will be to develop a means to sort individuals into metabolic groups, and eventually, develop risk factors for individuals. To reach the goal of personalizing medicine and nutrition, new experimental strategies are needed for human study designs. A promising approach for more complete analyses of the interaction of genetic makeups and environment relies on community-based participatory research (CBPR) methodologies. CBPR's central focus is developing a partnership among researchers and individuals in a community that allows for more in depth lifestyle analyses but also translational research that simultaneously helps improve the health of individuals and communities. The USDA-ARS Delta Nutrition Intervention Research program exemplifies CBPR providing a foundation for expanded personalized nutrition and medicine research for communities and individuals.

Investigación Participativa Basada en la Comunidad/métodos , Nutrigenómica/métodos , Pruebas Genéticas , Variación Genética , Humanos , Nutrigenómica/tendencias , Proyectos de Investigación , Estados Unidos , United States Department of Agriculture