Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Food Sec ; 28: 100494, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34513582

RESUMEN

The COVID-19 pandemic and subsequent lockdowns are creating health and economic crises that threaten food and nutrition security. The seafood sector provides important sources of nutrition and employment, especially in low-income countries, and is highly globalized allowing shocks to propagate. We studied COVID-19-related disruptions, impacts, and responses to the seafood sector from January through May 2020, using a food system resilience 'action cycle' framework as a guide. We find that some supply chains, market segments, companies, small-scale actors and civil society have shown initial signs of greater resilience than others. COVID-19 has also highlighted the vulnerability of certain groups working in- or dependent on the seafood sector. We discuss early coping and adaptive responses combined with lessons from past shocks that could be considered when building resilience in the sector. We end with strategic research needs to support learning from COVID-19 impacts and responses.

2.
Nature ; 597(7876): 360-365, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526707

RESUMEN

Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.


Asunto(s)
Acuicultura , Ecosistema , Monitoreo del Ambiente , Alimentos Marinos , Desarrollo Sostenible , Animales , Acuicultura/tendencias , Cambio Climático , Dieta , Ecología , Política Ambiental , Explotaciones Pesqueras , Abastecimiento de Alimentos/métodos , Gases de Efecto Invernadero , Humanos , Moluscos , Nitrógeno , Fósforo , Alimentos Marinos/provisión & distribución , Algas Marinas , Desarrollo Sostenible/tendencias
3.
BMC Infect Dis ; 21(1): 873, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34445962

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is among the most pressing One Health issues. While interventions and policies with various targets and goals have been implemented, evidence about factors underpinning success and failure of interventions in different sectors is lacking. The objective of this study is to identify characteristics of AMR interventions that increase their capacity to impact AMR. This study focuses on AMR interventions targeting E. coli. METHODS: We used the AMR-Intervene framework to extract descriptions of the social and ecological systems of interventions to determine factors contributing to their success. RESULTS: We identified 52 scientific publications referring to 42 unique E. coli AMR interventions. We mainly identified interventions implemented in high-income countries (36/42), at the national level (16/42), targeting primarily one sector of society (37/42) that was mainly the human sector (25/42). Interventions were primarily funded by governments (38/42). Most intervention targeted a low leverage point in the AMR system, (36/42), and aimed to change the epidemiology of AMR (14/42). Among all included publications, 55% (29/52) described at least one success factor or obstacle (29/52) and 19% (10/52) identified at least one success factor and one obstacle. Most reported success factors related to communication between the actors and stakeholders and the role of media, and stressed the importance of collaboration between disciplines and external partners. Described obstacles covered data quality, access to data and statistical analyses, and the validity of the results. CONCLUSIONS: Overall, we identified a lack of diversity regarding interventions. In addition, most published E. coli interventions were poorly described with limited evidence of the factors that contributed to the intervention success or failure. Design and reporting guidelines would help to improve reporting quality and provide a valuable tool for improving the science of AMR interventions.


Asunto(s)
Escherichia coli , Salud Única , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana , Humanos
5.
JMIR Res Protoc ; 10(6): e24378, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34110296

RESUMEN

BACKGROUND: Antimicrobial resistance (AMR) is an escalating global crisis with serious health, social, and economic consequences. Building social-ecological system resilience to reduce AMR and mitigate its impacts is critical. OBJECTIVE: The aim of this study is to compare and assess interventions that address AMR across the One Health spectrum and determine what actions will help to build social and ecological capacity and readiness to sustainably tackle AMR. METHODS: We will apply social-ecological resilience theory to AMR in an explicit One Health context using mixed methods and identify interventions that address AMR and its key pressure antimicrobial use (AMU) identified in the scientific literature and in the gray literature using a web-based survey. Intervention impacts and the factors that challenge or contribute to the success of interventions will be determined, triangulated against expert opinions in participatory workshops and complemented using quantitative time series analyses. We will then identify indicators using regression modeling, which can predict national and regional AMU or AMR dynamics across animal and human health. Together, these analyses will help to quantify the causal loop diagrams (CLDs) of AMR in the European and Southeast Asian food system contexts that are developed by diverse stakeholders in participatory workshops. Then, using these CLDs, the long-term impacts of selected interventions on AMR will be explored under alternate future scenarios via simulation modeling and participatory workshops. A publicly available learning platform housing information about interventions on AMR from a One Health perspective will be developed to help decision makers identify promising interventions for application in their jurisdictions. RESULTS: To date, 669 interventions have been identified in the scientific literature, 891 participants received a survey invitation, and 4 expert feedback and 4 model-building workshops have been conducted. Time series analysis, regression modeling of national and regional indicators of AMR dynamics, and scenario modeling activities are anticipated to be completed by spring 2022. Ethical approval has been obtained from the University of Waterloo's Office of Research Ethics (ethics numbers 40519 and 41781). CONCLUSIONS: This paper provides an example of how to study complex problems such as AMR, which require the integration of knowledge across sectors and disciplines to find sustainable solutions. We anticipate that our study will contribute to a better understanding of what actions to take and in what contexts to ensure long-term success in mitigating AMR and its impact and provide useful tools (eg, CLDs, simulation models, and public databases of compiled interventions) to guide management and policy decisions. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/24378.

6.
Nature ; 593(7858): E12, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33903771

RESUMEN

A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03508-0.

7.
Nature ; 591(7851): 551-563, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33762770

RESUMEN

The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.


Asunto(s)
Acuicultura/historia , Abastecimiento de Alimentos/historia , Desarrollo Sostenible/historia , Alimentación Animal , Animales , Animales Salvajes , Explotaciones Pesqueras , Peces , Agua Dulce , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Internacionalidad , Océanos y Mares , Mariscos
8.
J Antimicrob Chemother ; 76(1): 1-21, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33057678

RESUMEN

The global threat of antimicrobial resistance (AMR) requires coordinated actions by and across different sectors. Increasing attention at the global and national levels has led to different strategies to tackle the challenge. The diversity of possible actions to address AMR is currently not well understood from a One Health perspective. AMR-Intervene, an interdisciplinary social-ecological framework, describes interventions to tackle AMR in terms of six components: (i) core information about the publication; (ii) social system; (iii) bio-ecological system; (iv) triggers and goals; (v) implementation and governance; and (vi) assessment. AMR-Intervene provides a broadly applicable framework, which can inform the design, implementation, assessment and reporting of interventions to tackle AMR and, in turn, enable faster uptake of successful interventions to build societal resilience to AMR.


Asunto(s)
Salud Única , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana
9.
Bioscience ; 70(12): 1139-1144, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33376456

RESUMEN

Global environmental change challenges humanity because of its broad scale, long-lasting, and potentially irreversible consequences. Key to an effective response is to use an appropriate scientific lens to peer through the mist of uncertainty that threatens timely and appropriate decisions surrounding these complex issues. Identifying such corridors of clarity could help understanding critical phenomena or causal pathways sufficiently well to justify taking policy action. To this end, we suggest four principles: Follow the strongest and most direct path between policy decisions on outcomes, focus on finding sufficient evidence for policy purpose, prioritize no-regrets policies by avoiding options with controversial, uncertain, or immeasurable benefits, aim for getting the big picture roughly right rather than focusing on details.

10.
Environ Sci Technol ; 54(24): 16062-16070, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33251804

RESUMEN

Seafood is seen as promising for more sustainable diets. The increasing production in land-based closed Recirculating Aquaculture Systems (RASs) has overcome many local environmental challenges with traditional open net-pen systems such as eutrophication. The energy needed to maintain suitable water quality, with associated emissions, has however been seen as challenging from a global perspective. This study uses Life Cycle Assessment (LCA) to investigate the environmental performance and improvement potentials of a commercial RAS farm of tilapia and Clarias in Sweden. The environmental impact categories and indicators considered were freshwater eutrophication, climate change, energy demand, land use, and dependency on animal-source feed inputs per kg of fillet. We found that feed production contributed most to all environmental impacts (between 67 and 98%) except for energy demand for tilapia, contradicting previous findings that farm-level energy use is a driver of environmental pressures. The main improvement potentials include improved by-product utilization and use of a larger proportion of plant-based feed ingredients. Together with further smaller improvement potential identified, this suggests that RASs may play a more important role in a future, environmentally sustainable food system.


Asunto(s)
Acuicultura , Explotaciones Pesqueras , Alimentación Animal/análisis , Animales , Estadios del Ciclo de Vida , Suecia
11.
Lancet Infect Dis ; 20(12): e307-e311, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32853549

RESUMEN

Improving evidence for action is crucial to tackle antimicrobial resistance. The number of interventions for antimicrobial resistance is increasing but current research has major limitations in terms of efforts, methods, scope, quality, and reporting. Moving the agenda forwards requires an improved understanding of the diversity of interventions, their feasibility and cost-benefit, the implementation factors that shape and underpin their effectiveness, and the ways in which individual interventions might interact synergistically or antagonistically to influence actions against antimicrobial resistance in different contexts. Within the efforts to strengthen the global governance of antimicrobial resistance, we advocate for the creation of an international One Health platform for online learning. The platform will synthesise the evidence for actions on antimicrobial resistance into a fully accessible database; generate new scientific insights into the design, implementation, evaluation, and reporting of the broad range of interventions relevant to addressing antimicrobial resistance; and ultimately contribute to the goal of building societal resilience to this central challenge of the 21st century.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Salud Única , Animales , Humanos
12.
Trends Ecol Evol ; 35(6): 484-494, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32396815

RESUMEN

Development of new biocides has dominated human responses to evolution of antibiotic and pesticide resistance. Increasing and uniform biocide use, the spread of resistance genes, and the lack of new classes of compounds indicate the importance of navigating toward more sustainable coevolutionary dynamics between human culture and species that evolve resistance. To inform this challenge, we introduce the concept of coevolutionary governance and propose three priorities for its implementation: (i) new norms and mental models for lowering use, (ii) diversifying practices to reduce directional selection, and (iii) investment in collective action institutions to govern connectivity. We highlight the availability of solutions that facilitate broader sustainable development, which for antibiotic resistance include improved sanitation and hygiene, strong health systems, and decreased meat consumption.


Asunto(s)
Desinfectantes , Plaguicidas , Antibacterianos , Humanos
14.
Ambio ; 48(8): 831-854, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30506502

RESUMEN

Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.


Asunto(s)
Ecosistema , Agua de Mar , Animales , Países Bálticos , Ecología , Concentración de Iones de Hidrógeno , Océanos y Mares
15.
Ambio ; 48(8): 816-830, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30430407

RESUMEN

Major climate and ecological changes affect the world's oceans leading to a number of responses including increasing water temperatures, changing weather patterns, shrinking ice-sheets, temperature-driven shifts in marine species ranges, biodiversity loss and bleaching of coral reefs. In addition, ocean pH is falling, a process known as ocean acidification (OA). The root cause of OA lies in human policies and behaviours driving society's dependence on fossil fuels, resulting in elevated CO2 concentrations in the atmosphere. In this review, we detail the state of knowledge of the causes of, and potential responses to, OA with particular focus on Swedish coastal seas. We also discuss present knowledge gaps and implementation needs.


Asunto(s)
Ecosistema , Agua de Mar , Dióxido de Carbono , Cambio Climático , Arrecifes de Coral , Humanos , Concentración de Iones de Hidrógeno , Océanos y Mares
16.
Nature ; 562(7728): 519-525, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305731

RESUMEN

The food system is a major driver of climate change, changes in land use, depletion of freshwater resources, and pollution of aquatic and terrestrial ecosystems through excessive nitrogen and phosphorus inputs. Here we show that between 2010 and 2050, as a result of expected changes in population and income levels, the environmental effects of the food system could increase by 50-90% in the absence of technological changes and dedicated mitigation measures, reaching levels that are beyond the planetary boundaries that define a safe operating space for humanity. We analyse several options for reducing the environmental effects of the food system, including dietary changes towards healthier, more plant-based diets, improvements in technologies and management, and reductions in food loss and waste. We find that no single measure is enough to keep these effects within all planetary boundaries simultaneously, and that a synergistic combination of measures will be needed to sufficiently mitigate the projected increase in environmental pressures.


Asunto(s)
Agricultura/métodos , Agricultura/tendencias , Ambiente , Abastecimiento de Alimentos , Desarrollo Sostenible , Cambio Climático , Productos Agrícolas/metabolismo , Nitrógeno/metabolismo , Fósforo/metabolismo , Incertidumbre
17.
Sustain Sci ; 13(4): 1105-1120, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30147798

RESUMEN

Global seafood provides almost 20% of all animal protein in diets, and aquaculture is, despite weakening trends, the fastest growing food sector worldwide. Recent increases in production have largely been achieved through intensification of existing farming systems, resulting in higher risks of disease outbreaks. This has led to increased use of antimicrobials (AMs) and consequent antimicrobial resistance (AMR) in many farming sectors, which may compromise the treatment of bacterial infections in the aquaculture species itself and increase the risks of AMR in humans through zoonotic diseases or through the transfer of AMR genes to human bacteria. Multiple stakeholders have, as a result, criticized the aquaculture industry, resulting in consequent regulations in some countries. AM use in aquaculture differs from that in livestock farming due to aquaculture's greater diversity of species and farming systems, alternative means of AM application, and less consolidated farming practices in many regions. This, together with less research on AM use in aquaculture in general, suggests that large data gaps persist with regards to its overall use, breakdowns by species and system, and how AMs become distributed in, and impact on, the overall social-ecological systems in which they are embedded. This paper identifies the main factors (and challenges) behind application rates, which enables discussion of mitigation pathways. From a set of identified key mechanisms for AM usage, six proximate factors are identified: vulnerability to bacterial disease, AM access, disease diagnostic capacity, AMR, target markets and food safety regulations, and certification. Building upon these can enable local governments to reduce AM use through farmer training, spatial planning, assistance with disease identification, and stricter regulations. National governments and international organizations could, in turn, assist with disease-free juveniles and vaccines, enforce rigid monitoring of the quantity and quality of AMs used by farmers and the AM residues in the farmed species and in the environment, and promote measures to reduce potential human health risks associated with AMR.

18.
PLoS One ; 13(1): e0191086, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29357374

RESUMEN

Aquaculture has grown rapidly over the last three decades expanding at an average annual growth rate of 5.8% (2005-2014), down from 8.8% achieved between 1980 and 2010. The sector now produces 44% of total food fish production. Increasing demand and consumption from a growing global population are driving further expansion of both inland and marine aquaculture (i.e., mariculture, including marine species farmed on land). However, the growth of mariculture is dependent on the availability of suitable farming areas for new facilities, particularly for open farming practices that rely on the natural oceanic environmental parameters such as temperature, oxygen, chlorophyll etc. In this study, we estimated the marine areas within the exclusive economic zones of all countries that were suitable for potential open ocean mariculture activities. To this end, we quantify the environmental niche and inferred the global habitat suitability index (HSI) of the 102 most farmed marine species using four species distribution models. The average weighted HSI across the four models suggests that 72,000,000 km2 of ocean are to be environmentally suitable to farm one or more species. About 92% of the predicted area (66,000,000 km2) is environmentally suitable for farming finfish, 43% (31,000,000 km2) for molluscs and 54% (39,000,000 km2) for crustaceans. These predictions do not consider technological feasibility that can limit crustaceans farming in open waters. Suitable mariculture areas along the Atlantic coast of South America and West Africa appear to be most under-utilized for farming. Our results suggest that factors other than environmental considerations such as the lack of socio-economic and technological capacity, as well as aqua feed supply are currently limiting the potential for mariculture expansion in many areas.


Asunto(s)
Acuicultura/métodos , Ecosistema , Biología Marina , Animales , Biodiversidad , Clorofila/análisis , Ambiente , Oxígeno/análisis , Agua de Mar/química
19.
20.
Ambio ; 46(Suppl 3): 368-386, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29080009

RESUMEN

We review current knowledge about climate change impacts on Arctic seafood production. Large-scale changes in the Arctic marine food web can be expected for the next 40-100 years. Possible future trajectories under climate change for Arctic capture fisheries anticipate the movement of aquatic species into new waters and changed the dynamics of existing species. Negative consequences are expected for some fish stocks but others like the Barents Sea cod (Gadus morhua) may instead increase. Arctic aquaculture that constitutes about 2% of global farming is mainly made up of Norwegian salmon (Salmo salar) farming. The sector will face many challenges in a warmer future and some of these are already a reality impacting negatively on salmon growth. Other more indirect effects from climate change are more uncertain with respect to impacts on the economic conditions of Arctic aquaculture.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras , Alimentos Marinos , Animales , Acuicultura , Regiones Árticas , Cadena Alimentaria , Gadus morhua , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...