Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(27)2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34193415

RESUMEN

Industrial emissions play a major role in the global methane budget. The Permian basin is thought to be responsible for almost half of the methane emissions from all U.S. oil- and gas-producing regions, but little is known about individual contributors, a prerequisite for mitigation. We use a new class of satellite measurements acquired during several days in 2019 and 2020 to perform the first regional-scale and high-resolution survey of methane sources in the Permian. We find an unexpectedly large number of extreme point sources (37 plumes with emission rates >500 kg hour-1), which account for a range between 31 and 53% of the estimated emissions in the sampled area. Our analysis reveals that new facilities are major emitters in the area, often due to inefficient flaring operations (20% of detections). These results put current practices into question and are relevant to guide emission reduction efforts.

2.
Environ Sci Technol ; 54(16): 10246-10253, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32672947

RESUMEN

Satellite observations of atmospheric methane plumes offer a means for global mapping of methane point sources. Here we use the GHGSat-D satellite instrument with 50 m effective spatial resolution and 9-18% single-pass column precision to quantify mean source rates for three coal mine vents (San Juan, United States; Appin, Australia; and Bulianta, China) over a two-year period (2016-2018). This involves averaging wind-rotated observations from 14 to 24 overpasses to achieve satisfactory signal-to-noise. Our wind rotation method optimizes the wind direction information for individual plumes to account for error in meteorological databases. We derive source rates from the time-averaged plumes using integrated mass enhancement (IME) and cross-sectional flux (CSF) methods calibrated with large eddy simulations. We find time-averaged source rates ranging from 2320 to 5850 kg h-1 for the three coal mine vents, with 40-45% precision (1σ), and generally consistent with previous estimates. The IME and CSF methods agree within 15%. Our results demonstrate the potential of space-based monitoring for annual reporting of methane emissions from point sources and suggest that future satellite instruments with similar pixel resolution but better precision should be able to constrain a wide range of point sources.


Asunto(s)
Contaminantes Atmosféricos , Metano , Contaminantes Atmosféricos/análisis , Australia , China , Carbón Mineral , Estudios Transversales , Monitoreo del Ambiente , Metano/análisis
3.
Sci Adv ; 6(17): eaaz5120, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494644

RESUMEN

Using new satellite observations and atmospheric inverse modeling, we report methane emissions from the Permian Basin, which is among the world's most prolific oil-producing regions and accounts for >30% of total U.S. oil production. Based on satellite measurements from May 2018 to March 2019, Permian methane emissions from oil and natural gas production are estimated to be 2.7 ± 0.5 Tg a-1, representing the largest methane flux ever reported from a U.S. oil/gas-producing region and are more than two times higher than bottom-up inventory-based estimates. This magnitude of emissions is 3.7% of the gross gas extracted in the Permian, i.e., ~60% higher than the national average leakage rate. The high methane leakage rate is likely contributed by extensive venting and flaring, resulting from insufficient infrastructure to process and transport natural gas. This work demonstrates a high-resolution satellite data-based atmospheric inversion framework, providing a robust top-down analytical tool for quantifying and evaluating subregional methane emissions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...