Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Food Microbiol ; 85: 103280, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31500706

RESUMEN

Listeria monocytogenes causes severe diseases in humans, including febrile gastroenteritis and systemic infections that has a high mortality despite antibiotic treatment. This pathogen may cause massive outbreaks associated to the consumption of contaminated food products, which highlight its importance in public health. In the last decade, L. monocytogenes has emerged as a foodborne pathogen of major importance in Chile. A previous work showed that in Chile during 2008 and 2009, L. monocytogenes serotypes 1/2a, 1/2b and 4b were the most frequently identified in food and clinical strains. Here we report the molecular characterization of L. monocytogenes strains isolated from 2008 to 2017 in the country. Our results indicate that serotypes 1/2a, 1/2b and 4b continue to be the most commonly found in food products. In addition, we identify persistent and widespread PFGE subtypes. This study reports ten years of epidemiological surveillance ofL. monocytogenes in Chile.


Asunto(s)
Monitoreo Epidemiológico , Microbiología de Alimentos , Enfermedades Transmitidas por los Alimentos/epidemiología , Listeria monocytogenes/genética , Listeriosis/epidemiología , Chile/epidemiología , Recuento de Colonia Microbiana , ADN Bacteriano/genética , Brotes de Enfermedades , Enfermedades Transmitidas por los Alimentos/microbiología , Gastroenteritis/epidemiología , Gastroenteritis/microbiología , Variación Genética , Humanos , Listeria monocytogenes/patogenicidad , Productos de la Carne/microbiología , Epidemiología Molecular , Salud Pública , Serogrupo , Serotipificación , Factores de Virulencia/genética
2.
PLoS Negl Trop Dis ; 13(11): e0007825, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31756188

RESUMEN

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) cause significant diarrheal morbidity and mortality in children of resource-limited regions, warranting development of effective vaccine strategies. Genetic diversity of the ETEC pathovar has impeded development of broadly protective vaccines centered on the classical canonical antigens, the colonization factors and heat-labile toxin. Two non-canonical ETEC antigens, the EtpA adhesin, and the EatA mucinase are immunogenic in humans and protective in animal models. To foster rational vaccine design that complements existing strategies, we examined the distribution and molecular conservation of these antigens in a diverse population of ETEC isolates. METHODS: Geographically diverse ETEC isolates (n = 1159) were interrogated by PCR, immunoblotting, and/or whole genome sequencing (n = 46) to examine antigen conservation. The most divergent proteins were purified and their core functions assessed in vitro. RESULTS: EatA and EtpA or their coding sequences were present in 57.0% and 51.5% of the ETEC isolates overall, respectively; and were globally dispersed without significant regional differences in antigen distribution. These antigens also exhibited >93% amino acid sequence identity with even the most divergent proteins retaining the core adhesin and mucinase activity assigned to the prototype molecules. CONCLUSIONS: EtpA and EatA are well-conserved molecules in the ETEC pathovar, suggesting that they serve important roles in virulence and that they could be exploited for rational vaccine design.

3.
PLoS Negl Trop Dis ; 13(11): e0007828, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31747410

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is one of the most common diarrheal pathogens in the low- and middle-income regions of the world, however a systematic examination of the genomic content of isolates from Chile has not yet been undertaken. Whole genome sequencing and comparative analysis of a collection of 125 ETEC isolates from three geographic locations in Chile, allowed the interrogation of phylogenomic groups, sequence types and genes specific to isolates from the different geographic locations. A total of 80.8% (101/125) of the ETEC isolates were identified in E. coli phylogroup A, 15.2% (19/125) in phylogroup B, and 4.0% (5/125) in phylogroup E. The over-representation of genomes in phylogroup A was significantly different from other global ETEC genomic studies. The Chilean ETEC isolates could be further subdivided into sub-clades similar to previously defined global ETEC reference lineages that had conserved multi-locus sequence types and toxin profiles. Comparison of the gene content of the Chilean ETEC identified genes that were unique based on geographic location within Chile, phylogenomic classifications or sequence type. Completion of a limited number of genomes provided insight into the ETEC plasmid content, which is conserved in some phylogenomic groups and not conserved in others. These findings suggest that the Chilean ETEC isolates contain unique virulence factor combinations and genomic content compared to global reference ETEC isolates.

4.
PLoS One ; 14(5): e0215174, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31083666

RESUMEN

Salmonid Rickettsial Septicemia (SRS) is the disease of greatest economic importance in the Chilean salmon farming industry, causing high mortality in fish during the final stage of their productive cycle at sea. Since current, commercially available vaccines have not demonstrated the expected efficacy levels, antimicrobials, most commonly florfenicol, are still the main resource for the treatment and control of this pathogen. The aim of this study was to determine the most appropriate single dose of florfenicol, administered through medicated feed, for the treatment of Piscirickettsia salmonis (P. salmonis), using pharmacokinetic/pharmacodynamic (PK/PD) models. Previously, Minimum Inhibitory Concentrations (MICs) of florfenicol were determined for 87 P. salmonis isolates in order to define the epidemiological cut-off point (COWT). The most commonly observed MIC was 0.125 µg mL-1 (83.7%). The COWT value was 0.25 µg mL-1 with a standard deviation of 0.47 log2 µg mL-1 and 0.36 log2 µg mL-1, for Normalized resistance interpretation (NRI) method and ECOFFinder method, respectively. A MIC of 1 µg mL-1 was considered the pharmacodynamic value (PD) to define PK/PD indices. Three doses of florfenicol were evaluated in fish farmed under controlled conditions. For each dose, 150 fish were used and blood plasma samples were collected at different time points (0-48 hours). PK parameters were obtained from curves representing plasma concentrations as a function of time. The results of Monte Carlo simulation indicate that at a dose of 20 mg/Kg l.w. of florfenicol, administered orally as medicated feed, there is 100% probability (PTA) of achieving the desired efficacy (AUC0-24h/MIC>125). According to these results, we suggest that at the indicated dose, the PK/PD cut-off point for florfenicol versus P. salmonis could be 2 µg mL-1 (PTA = 99%). In order to assess the indicated dose in Atlantic salmon, fish were inoculated with P. salmonis LF-89 strain and then treated with the optimized dose of florfenicol, 20 mg/Kg bw for 15 days.


Asunto(s)
Antibacterianos/uso terapéutico , Enfermedades de los Peces/tratamiento farmacológico , Infecciones por Piscirickettsiaceae/tratamiento farmacológico , Tianfenicol/análogos & derivados , Administración Oral , Animales , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Área Bajo la Curva , Farmacorresistencia Bacteriana , Enfermedades de los Peces/microbiología , Explotaciones Pesqueras , Semivida , Pruebas de Sensibilidad Microbiana , Método de Montecarlo , Piscirickettsia/efectos de los fármacos , Piscirickettsia/aislamiento & purificación , Infecciones por Piscirickettsiaceae/microbiología , Curva ROC , Salmo salar , Tianfenicol/farmacocinética , Tianfenicol/farmacología , Tianfenicol/uso terapéutico
5.
Anaerobe ; 58: 73-79, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31034928

RESUMEN

Increased antibiotic usage is the main risk factor for gut microbiota dysbiosis. In dysbiosis, there is an increased susceptibility to intestinal pathogens, such as Clostridium difficile infection, the leading cause of hospital-acquired infection worldwide. High-spectrum antibiotics, such as vancomycin or metronidazole, also increases the risk of developing CDI symptoms after the treatment. An impaired immune response could also be responsible for the high incidence of recurrence of CDI (R-CDI), suggesting that immune system stimulation could help eradicate the infection in patients suffering multiple episodes in CDI or prevent the infective course. Here, we discuss novel immunotherapeutic approaches that aid the immune system to target C. difficile and how these can be improved.


Asunto(s)
Vacunas Bacterianas/inmunología , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/terapia , Clostridium difficile/inmunología , Inmunoterapia/métodos , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/aislamiento & purificación , Investigación Biomédica/tendencias , Humanos
6.
mSystems ; 4(1)2019.
Artículo en Inglés | MEDLINE | ID: mdl-30944874

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a significant cause of childhood diarrhea and is a leading cause of traveler's diarrhea. ETEC strains encoding the heat-stable enterotoxin (ST) are more often associated with childhood diarrhea than ETEC strains that encode only the heat-labile enterotoxin (LT). Colonization factors (CFs) also have a demonstrated role in ETEC virulence, and two of the most prevalent CFs among ETEC that have caused diarrhea are colonization factor antigen I (CFA/I) and CS6. In the current report, we describe the genomes of 269 CS6- or CFA/I-encoding ST-only ETEC isolates that were associated with human diarrhea. While the CS6 and CFA/I ETEC were identified in at least 13 different ETEC genomic lineages, a majority (85%; 229/269) were identified in only six lineages. Complete genome sequencing of selected isolates demonstrated that a conserved plasmid contributed to the dissemination of CFA/I whereas at least five distinct plasmids were involved in the dissemination of ST and/or CS6. Additionally, there were differences in gene content between CFA/I and CS6 ETEC at the phylogroup and lineage levels and in association with their geographic location of isolation as well as lineage-related differences in ST production. Thus, we demonstrate that genomically diverse E. coli strains have acquired ST, as well as CFA/I or CS6, via one or more plasmids and that, in some cases, isolates of a particular lineage or geographic location have undergone additional modifications to their genome content. These findings will aid investigations of virulence and the development of improved diagnostics and vaccines against this important human diarrheal pathogen. IMPORTANCE Comparative genomics and functional characterization were used to analyze a global collection of CFA/I and CS6 ST-only ETEC isolates associated with human diarrhea, demonstrating differences in the genomic content of CFA/I and CS6 isolates related to CF type, lineage, and geographic location of isolation and also lineage-related differences in ST production. Complete genome sequencing of selected CFA/I and CS6 isolates enabled descriptions of a highly conserved ST-positive (ST+) CFA/I plasmid and of at least five diverse ST and/or CS6 plasmids among the CS6 ETEC isolates. There is currently no approved vaccine for ST-only ETEC, or for any ETEC for that matter, and as such, the current report provides functional verification of ST and CF production and antimicrobial susceptibility testing and an in-depth genomic characterization of a collection of isolates that could serve as representatives of CFA/I- or CS6-encoding ST-only ETEC strains for future studies of ETEC pathogenesis, vaccine studies, and/or clinical trials.

7.
Emerg Microbes Infect ; 8(1): 486-502, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30924410

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens causing severe gastroenteritis, which may lead to hemolytic uremic syndrome. The Locus of Enterocyte Effacement (LEE), a Pathogenicity Island (PAI), is a major determinant of intestinal epithelium attachment of a group of STEC strains; however, the virulence repertoire of STEC strains lacking LEE, has not been fully characterized. The incidence of LEE-negative STEC strains has increased in several countries, highlighting the relevance of their study. In order to gain insights into the basis for the emergence of LEE-negative STEC strains, we performed a large-scale genomic analysis of 367 strains isolated worldwide from humans, animals, food and the environment. We identified uncharacterized genomic islands, including two PAIs and one Integrative Conjugative Element. Additionally, the Locus of Adhesion and Autoaggregation (LAA) was the most prevalent PAI among LEE-negative strains and we found that it contributes to colonization of the mice intestine. Our comprehensive and rigorous comparative genomic and phylogenetic analyses suggest that the accumulative acquisition of PAIs has played an important, but currently unappreciated role, in the evolution of virulence in these strains. This study provides new knowledge on the pathogenicity of LEE-negative STEC strains and identifies molecular markers for their epidemiological surveillance.


Asunto(s)
Evolución Molecular , Islas Genómicas , Fosfoproteínas/deficiencia , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Escherichia coli Shiga-Toxigénica/patogenicidad , Factores de Virulencia/genética , Animales , Modelos Animales de Enfermedad , Microbiología Ambiental , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli , Microbiología de Alimentos , Genotipo , Incidencia , Secuencias Repetitivas Esparcidas , Intestinos/microbiología , Ratones , Filogenia , Escherichia coli Shiga-Toxigénica/genética , Virulencia
8.
PLoS Negl Trop Dis ; 13(1): e0007037, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608930

RESUMEN

BACKGROUND: Enterotoxigenic Escherichia coli (ETEC) encoding heat-stable enterotoxin (ST) alone or with heat-labile enterotoxin (LT) cause moderate-to-severe diarrhea (MSD) in developing country children. The Global Enteric Multicenter Study (GEMS) identified ETEC encoding ST among the top four enteropathogens. Since the GEMS objective was to provide evidence to guide development and implementation of enteric vaccines and other interventions to diminish diarrheal disease morbidity and mortality, we examined colonization factor (CF) prevalence among ETEC isolates from children age <5 years with MSD and from matched controls in four African and three Asian sites. We also assessed strength of association of specific CFs with MSD. METHODOLOGY/PRINCIPAL FINDINGS: MSD cases enrolled at healthcare facilities over three years and matched controls were tested in a standardized manner for many enteropathogens. To identify ETEC, three E. coli colonies per child were tested by polymerase chain reaction (PCR) to detect genes encoding LT, ST; confirmed ETEC were examined by PCR for major CFs (Colonization Factor Antigen I [CFA/I] or Coli Surface [CS] antigens CS1-CS6) and minor CFs (CS7, CS12, CS13, CS14, CS17, CS18, CS19, CS20, CS21, CS30). ETEC from 806 cases had a single toxin/CF profile in three tested strains per child. Major CFs, components of multiple ETEC vaccine candidates, were detected in 66.0% of LT/ST and ST-only cases and were associated with MSD versus matched controls by conditional logistic regression (p≤0.006); major CFs detected in only 25.0% of LT-only cases weren't associated with MSD. ETEC encoding exclusively CS14, identified among 19.9% of 291 ST-only and 1.5% of 259 LT/ST strains, were associated with MSD (p = 0.0011). No other minor CF exhibited prevalence ≥5% and significant association with MSD. CONCLUSIONS/SIGNIFICANCE: Major CF-based efficacious ETEC vaccines could potentially prevent up to 66% of pediatric MSD cases due to ST-encoding ETEC in developing countries; adding CS14 extends coverage to ~77%.


Asunto(s)
Escherichia coli Enterotoxigénica/genética , Escherichia coli Enterotoxigénica/aislamiento & purificación , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Proteínas Fimbrias/genética , Factores de Virulencia/genética , África/epidemiología , Asia/epidemiología , Estudios de Casos y Controles , Preescolar , Femenino , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Reacción en Cadena de la Polimerasa , Prevalencia
9.
Artículo en Inglés | MEDLINE | ID: mdl-30627427

RESUMEN

Background: Healthcare-associated infections (HAIs) have a major impact on public health worldwide. Particularly, hospital surfaces contaminated with bacterial pathogens are often the origin of both sporadic cases and outbreaks of HAIs. It has been demonstrated that copper surfaces reduce the microbial burden of high touch surfaces in the hospital environment. Here we report the antimicrobial characterization of a novel composite coating with embedded copper particles, named Copper Armour™. Methods: The Copper Armour™ bactericidal activity was evaluated in in vitro assays against several bacterial pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli O157:H7 and Listeria monocytogenes. Additionally, its antimicrobial properties were also evaluated in a pilot study over a nine-week period at an adult intensive care unit. For this, four high touch surfaces, including bed rails, overbed table, bedside table and IV Pole, were coated with Cooper Armour™, and its microbial burden was determined over a nine-week period. Results: Copper Armour™ coated samples showed an in vitro reduction in bacterial burden of > 99.9% compared to control samples. Moreover, pilot study results indicate that Copper Armour™ significantly reduces the level of microbial contamination on high-touch surfaces in the hospital environment, as compared with standard surfaces. Conclusions: Based on its antimicrobial properties, Copper Armour™ is a novel self-sanitizing coating that exhibits bactericidal activity against important human pathogens and significantly reduces the microbial burden of hospital surfaces. This composite could be used as a self-sanitizing coating to complement infection control strategies in healthcare facilities.

10.
Front Immunol ; 10: 2993, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998297

RESUMEN

Macrophage activation is intimately linked to metabolic reprogramming. Inflammatory (M1) macrophages are able to sustain inflammatory responses and to kill pathogens, mostly by relying on aerobic glycolysis and fatty acid biosynthesis. Glycolysis is a fast way of producing ATP, and fatty acids serve as precursors for the synthesis of inflammatory mediators. On the opposite side, anti-inflammatory (M2) macrophages mediate the resolution of inflammation and tissue repair, switching their metabolism to fatty acid oxidation and oxidative phosphorylation. Over the years, this classical view has been challenged by recent discoveries pointing to a more complex metabolic network during macrophage activation. Lipid metabolism plays a critical role in the activation of both M1 and M2 macrophages. Recent evidence shows that fatty acid oxidation is also essential for inflammasome activation in M1 macrophages, and glycolysis is now known to fuel fatty acid oxidation in M2 macrophages. Ultimately, targeting lipid metabolism in macrophages can improve the outcome of metabolic diseases. Here, we review the main aspects of macrophage immunometabolism from the perspective of the metabolism of lipids. Building a reliable metabolic network during macrophage activation will bring us closer to targeting macrophages for improving human health.

11.
Front Microbiol ; 9: 2463, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30459723

RESUMEN

The coli surface antigen 26 (CS26) of enterotoxigenic Escherichia coli (ETEC) had been described as a putative adhesive pilus based on the partial sequence of the crsH gene, detected in isolates from children with diarrhea in Egypt. However, its production and activity as adherence determinant has not been experimentally addressed. The crsH was identified as a homolog of genes encoding structural subunits of ETEC colonization factors (CFs) CS12, CS18, and CS20. These CFs, along with the recently discovered CS30, belong to the γ2 family of pili assembled by the chaperone-usher pathway (CU pili). Further, the complete CS26 locus, crsHBCDEFG, was described in an O141 ETEC strain (ETEC 100664) obtained from a diarrhea case in The Gambia, during the Global Enterics Multicenter Study. Here, we report that CS26 is a pilus of ∼10 nm in diameter, with the capacity to increase the cell adherence of the non-pathogenic strain E. coli DH10B. As for other related pili, production of CS26 seems to be regulated by phase variation. Deletion of crsHBCDEFG in ETEC 100664 significantly decreased its adherence capacity, which was recovered by in trans complementation. Furthermore, CrsH was cross-recognized by polyclonal antibodies directed against the major structural subunit of CS20, CsnA, as determined by Western blotting and immunogold labeling. ETEC CS26+ strains were found to harbor the heat-labile enterotoxin only, within three different sequence types of phylogroups A and B1, the latter suggesting acquisition through independent events of horizontal transfer. Overall, our results demonstrate that CS26 is an adhesive pilus of human ETEC. In addition, cross-reactivity with anti-CsnA antibodies indicate presence of common epitopes in γ2-CFs.

12.
Microb Pathog ; 123: 259-263, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30009972

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens that can cause severe disease. The ability to adhere to epithelial cells is an important virulence trait and pathogenicity islands (PAIs) play an important role. Recently, researchers identified a member of the Heat-resistant agglutinin family and characterized this antigen named Hemagglutinin from Shiga toxin-producing E. coli (Hes). More importantly, they showed that hes and other genes such as iha, pagC and agn43 were integrated in each of the four modules present in the new PAI named Locus of Adhesion and Autoaggregation (LAA) whose presence is associated with severe disease linked to with LEE-negatives STEC. The distribution of LAA among STEC strains isolates from different origins between 2000 and 2015 from cattle, the farm environment, and food and harboring diverse virulence was investigated. The STEC strains were characterized by PCR to detect three modules of LAA and agn43 (as marker of module IV), and phylogenetic groups were determined. LAA was found in 46% of LEE-negative STEC corresponding to serogroups O91, O174, O113, O171, O178, O130 and others. The presence of this PAI is associated with strains harboring stx2 (56%) and belonging to phylogroup B1 (91%). LAA is a novel pathogenicity island associated with strains isolated from Hemolytic Uremic Syndrome cases. Therefore, the results of this study contribute to a better understanding regarding the pathogenicity of this emergent subset of STEC strains harboring LAA as a predictor of virulence of LEE-negative STEC strains.


Asunto(s)
Proteínas de Escherichia coli/genética , Islas Genómicas/genética , Fosfoproteínas/genética , Serotipificación , Escherichia coli Shiga-Toxigénica/genética , Factores de Virulencia/genética , Adhesinas de Escherichia coli/genética , Animales , Animales Domésticos , Argentina , Proteínas Bacterianas/genética , Bovinos , Análisis por Conglomerados , Escherichia coli/genética , Escherichia coli/patogenicidad , Infecciones por Escherichia coli/veterinaria , Marcadores Genéticos , Genoma Bacteriano , Hemaglutininas , Filogenia , Toxina Shiga I/genética , Toxina Shiga II/genética , Virulencia
13.
Molecules ; 23(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029513

RESUMEN

A rapid emergence of resistant bacteria is occurring worldwide, endangering the efficacy of antibiotics and reducing the therapeutic arsenal available for treatment of infectious diseases. In the present study, we developed a new class of compounds with antibacterial activity obtained by a simple, two step synthesis and screened the products for in vitro antibacterial activity against ATCC® strains using the broth microdilution method. The compounds exhibited minimum inhibitory concentrations (MIC) of 1⁻32 µg/mL against Gram-positive ATCC® strains. The structure⁻activity relationship indicated that the thiophenol ring is essential for antibacterial activity and the substituents on the thiophenol ring module, for antibacterial activity. The most promising compounds detected by screening were tested against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF) clinical isolates. We found remarkable activity against VREF for compounds 7 and 16, were the MIC50/90 were 2/4 µg/mL and 4/4 µg/mL, respectively, while for vancomycin the MIC50/90 was 256/512 µg/mL. Neither compound affected cell viability in any of the mammalian cell lines at any of the concentrations tested. These in vitro data show that compounds 7 and 16 have an interesting potential to be developed as new antibacterial drugs against infections caused by VREF.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Fenómenos Químicos , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Difracción de Rayos X
14.
Front Immunol ; 9: 1026, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867993

RESUMEN

Crohn's disease (CD) is a chronic inflammatory bowel disorder characterized by deregulated inflammation triggered by environmental factors. Notably, adherent-invasive Escherichia coli (AIEC), a bacterium with the ability to survive within macrophages is believed to be one of such factors. Glucocorticoids are the first line treatment for CD and to date, it is unknown how they affect bactericidal and inflammatory properties of macrophages against AIEC. The aim of this study was to evaluate the impact of glucocorticoid treatment on AIEC infected macrophages. First, THP-1 cell-derived macrophages were infected with a CD2-a AIEC strain, in the presence or absence of the glucocorticoid dexamethasone (Dex) and mRNA microarray analysis was performed. Differentially expressed mRNAs were confirmed by TaqMan-qPCR. In addition, an amikacin protection assay was used to evaluate the phagocytic and bactericidal activity of Dex-treated macrophages infected with E. coli strains (CD2-a, HM605, NRG857c, and HB101). Finally, cytokine secretion and the inflammatory phenotype of macrophages were evaluated by ELISA and flow cytometry, respectively. The microarray analysis showed that CD2-a, Dex, and CD2-a + Dex-treated macrophages have differential inflammatory gene profiles. Also, canonical pathway analysis revealed decreased phagocytosis signaling by Dex and anti-inflammatory polarization on CD2-a + Dex macrophages. Moreover, amikacin protection assay showed reduced phagocytosis upon Dex treatment and TaqMan-qPCR confirmed Dex inhibition of three phagocytosis-associated genes. All bacteria strains induced TNF-α, IL-6, IL-23, CD40, and CD80, which was inhibited by Dex. Thus, our data demonstrate that glucocorticoids impair phagocytosis and induce anti-inflammatory polarization after AIEC infection, possibly contributing to the survival of AIEC in infected CD patients.


Asunto(s)
Enfermedad de Crohn/microbiología , Dexametasona/farmacología , Infecciones por Escherichia coli/inmunología , Glucocorticoides/farmacología , Macrófagos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Animales , Adhesión Bacteriana , Enfermedad de Crohn/inmunología , Citocinas/inmunología , Escherichia coli/patogenicidad , Humanos , Inflamación , Macrófagos/microbiología , Ratones , Ratones Noqueados , Análisis por Micromatrices , Proteína Adaptadora de Señalización NOD2/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Células THP-1 , Factor de Necrosis Tumoral alfa/inmunología
15.
Vaccine ; 36(36): 5435-5441, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28668568

RESUMEN

Noroviruses (NoVs) are one of the leading causes of acute gastroenteritis, including both outbreaks and endemic infections. The development of preventive strategies, including vaccines, for the most susceptible groups (children <5years of age, the elderly and individuals suffering crowding, such as military personnel and travelers) is desirable. However, NoV vaccine development has faced many difficulties, including genetic/antigenic diversity, limited knowledge on NoV immunology and viral cycle, lack of a permissive cell line for cultivation and lack of a widely available and successful animal model. Vaccine candidates rely on inoculation of virus-like particles (VLPs) formed by the main capsid protein VP1, subviral particles made from the protruding domain of VP1 (P-particles) or viral vectors with a NoV capsid gene insert produced by bioengineering technologies. Polivalent vaccines including multiple NoV genotypes and/or other viruses acquired by the enteric route have been developed. A VLP vaccine candidate has reached phase II clinical trials and several others are in pre-clinical stages of development. In this article we discuss the main challenges facing the development of a NoV vaccine and the current status of prevailing candidates.


Asunto(s)
Norovirus/patogenicidad , Vacunas Virales/uso terapéutico , Enfermedad Aguda , Animales , Bioingeniería/métodos , Infecciones por Caliciviridae/inmunología , Infecciones por Caliciviridae/prevención & control , Proteínas de la Cápside/inmunología , Gastroenteritis/inmunología , Gastroenteritis/prevención & control , Humanos , Norovirus/inmunología
16.
Artículo en Inglés | MEDLINE | ID: mdl-29075617

RESUMEN

Background: Diarrheagenic Escherichia coli (DEC) strains are a major cause of diarrhea in children under 5 years of age worldwide. DEC pathogenicity relies on the interaction of bacteria with environmental factors, including the host's resident gut microbiota. Previous reports have shown changes in the gut microbiota's composition during episodes of diarrhea, which may increase the pathogenicity of DEC strains. More intense and detailed identification of microbiota strains specifically associated with DEC infections and disease is needed to pinpoint their role in DEC pathogenicity. Aim: To identify resident indicative bacterial taxa in DEC-positive diarrhea stool samples of Chilean children. Methods: We analyzed 63 diarrheal stool samples from children 1-5 years of age by FilmArray® GI in order to identify a potential pathogen and to group diarrhea episodes into those caused by DEC as sole pathogen (DEC group, 32 samples) and those caused by an enteric virus as sole pathogen (viral group, 31 samples). In addition, 30 stool samples from healthy children, negative for enteric pathogens, were evaluated (healthy group). The 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs) at 99% identity and their representatives were used to assign them to operational phylogenetic units (OPUs) using a phylogenetic inference approach. Results: Taxa assignment using the OPU approach resulted in a lower number of units but with higher accuracy compared to the OTU approach. Data analysis indicated an increase in sequences belonging to the phylum Proteobacteria in the DEC group compared to the viral and healthy groups. Samples displayed a statistically different community structure by sample grouping by redundancy analysis and ANOVA. Escherichia albertii (p = 0.001), Citrobacter werkmanii (p = 0.001), Yersinia enterocolitica, subsp. paleartica (p = 0.048), and Haemophilus sputorum (p = 0.028) were indicative species for the DEC group as compared to the viral and healthy groups. Conclusion: Gut microbiota in Chilean children with DEC-positive diarrhea differed from microbiota associated with enteric virus and healthy children. Indicative species found in this study may prove relevant in advancing our understanding of the relationship between resident gut microbiota and DEC leading to the occurrence of disease.


Asunto(s)
Diarrea/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Microbioma Gastrointestinal/genética , Tracto Gastrointestinal/microbiología , Preescolar , Chile/epidemiología , Estudios de Cohortes , Diarrea/epidemiología , Infecciones por Escherichia coli/epidemiología , Heces/microbiología , Humanos , Lactante , Filogenia , ARN Ribosómico 16S/genética
17.
Rev. méd. Chile ; 145(9): 1129-1136, set. 2017. tab, graf
Artículo en Español | LILACS-Express | ID: biblio-902597

RESUMEN

Background: Different strains of invasive Escherichia coli (E. coli), isolated from intestinal mucosa of patients, are related to the pathogenesis of inflammatory bowel diseases (IBD). Aim: To evaluate an association between intracellular E. coli and IBD; its clinical characteristics and use of steroids. Material and Methods: Sixty one patients with Crohn's disease and 83 with ulcerative colitis were studied. To determine the intracellular E. coli content, colonoscopy biopsies of these patients and 29 control subjects were processed using the gentamicin protection assay. Differences in the bacterial content between patient groups were evaluated using Mann-Whitney test, while the association between presence of E. coli with endoscopic activity, location/extension and use of corticosteroid as anti-inflammatory treatment were evaluated with Fisher's exact test or Chi-square test. Results: E. coli strains were detected in 36.1, 39.3 and 10.3% of patients with ulcerative colitis, Crohn's disease and controls, respectively. The number of bacteria per biopsy in Crohn's disease and ulcerative colitis was significantly higher than in controls (p < 0.01 between patients and controls). In ulcerative colitis, significant associations were found between the presence of bacteria and disease location and use of corticosteroids. In Crohn's disease, no association was found. Conclusions: IBD are associated with the presence of intracellular E. coli strains in the intestinal mucosa, suggesting an alteration in the microbiota or loss of integrity of the epithelial barrier. The association of intracellular E. coli with clinical features and the use of corticosteroids in ulcerative colitis suggests that different factors could promote colonization or proliferation of these bacteria.

18.
Sci Rep ; 7(1): 7011, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765569

RESUMEN

Shiga Toxin-producing Escherichia coli (STEC) are a group of foodborne pathogens associated with diarrhea, dysentery, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Shiga toxins are the major virulence factor of these pathogens, however adhesion and colonization to the human intestine is required for STEC pathogenesis. A subset of STEC strains carry the Locus of Enterocyte Effacement (LEE) pathogenicity island (PAI), which encodes genes that mediate the colonization of the human intestine. While LEE-positive STEC strains have traditionally been associated with human disease, the burden of disease caused by STEC strains that lacks LEE (LEE-negative) has increased recently in several countries; however, in the absence of LEE, the molecular pathogenic mechanisms by STEC strains are unknown. Here we report a 86-kb mosaic PAI composed of four modules that encode 80 genes, including novel and known virulence factors associated with adherence and autoaggregation. Therefore, we named this PAI as Locus of Adhesion and Autoaggregation (LAA). Phylogenomic analysis using whole-genome sequences of STEC strains available in the NCBI database indicates that LAA PAI is exclusively present in a subset of emerging LEE-negative STEC strains, including strains isolated from HC and HUS cases. We suggest that the acquisition of this PAI is a recent evolutionary event, which may contribute to the emergence of these STEC.


Asunto(s)
Adhesinas Bacterianas/genética , Infecciones por Escherichia coli/microbiología , Sitios Genéticos , Islas Genómicas , Escherichia coli Shiga-Toxigénica/genética , Factores de Virulencia/genética , Biología Computacional , Genoma Bacteriano , Humanos , Filogenia , Escherichia coli Shiga-Toxigénica/clasificación
19.
Front Microbiol ; 8: 639, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28596755

RESUMEN

Adherent-invasive Escherichia coli (AIEC) strains are genetically variable and virulence factors for AIEC are non-specific. FimH is the most studied pathogenicity-related protein, and there have been few studies on other proteins, such as Serine Protease Autotransporters of Enterobacteriacea (SPATEs). The goal of this study is to characterize E. coli strains isolated from patients with Crohn's disease (CD) in Chile and Spain, and identify genetic differences between strains associated with virulence markers and clonality. We characterized virulence factors and genetic variability by pulse field electrophoresis (PFGE) in 50 E. coli strains isolated from Chilean and Spanish patients with CD, and also determined which of these strains presented an AIEC phenotype. Twenty-six E. coli strains from control patients were also included. PFGE patterns were heterogeneous and we also observed a highly diverse profile of virulence genes among all E. coli strains obtained from patients with CD, including those strains defined as AIEC. Two iron transporter genes chuA, and irp2, were detected in various combinations in 68-84% of CD strains. We found that the most significant individual E. coli genetic marker associated with CD E. coli strains was chuA. In addition, patho-adaptative fimH mutations were absent in some of the highly adherent and invasive strains. The fimH adhesin, the iron transporter irp2, and Class-2 SPATEs did not show a significant association with CD strains. The V27A fimH mutation was detected in the most CD strains. This study highlights the genetic variability of E. coli CD strains from two distinct geographic origins, most of them affiliated with the B2 or D E. coli phylogroups and also reveals that nearly 40% of Chilean and Spanish CD patients are colonized with E.coli with a characteristic AIEC phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA