Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Más filtros

Base de datos
Intervalo de año de publicación
Nat Commun ; 10(1): 2724, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31222017


Germanium has long been regarded as a promising laser material for silicon based opto-electronics. It is CMOS-compatible and has a favourable band structure, which can be tuned by strain or alloying with Sn to become direct, as it was found to be required for interband semiconductor lasers. Here, we report lasing in the mid-infrared region (from λ = 3.20 µm up to λ = 3.66 µm) in tensile strained Ge microbridges uniaxially loaded above 5.4% up to 5.9% upon optical pumping, with a differential quantum efficiency close to 100% with a lower bound of 50% and a maximal operating temperature of 100 K. We also demonstrate the effect of a non-equilibrium electron distribution in k-space which reveals the importance of directness for lasing. With these achievements the strained Ge approach is shown to compare well to GeSn, in particular in terms of efficiency.

J Phys Condens Matter ; 28(16): 165801, 2016 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-26988255


We report on the spin transport properties in p-doped germanium (Ge-p) using low temperature magnetoresistance measurements, electrical spin injection from a ferromagnetic metal and the spin pumping-inverse spin Hall effect method. Electrical spin injection is carried out using three-terminal measurements and the Hanle effect. In the 2-20 K temperature range, weak antilocalization and the Hanle effect provide the same spin lifetime in the germanium valence band (≈1 ps) in agreement with predicted values and previous optical measurements. These results, combined with dynamical spin injection by spin pumping and the inverse spin Hall effect, demonstrate successful spin accumulation in Ge. We also estimate the spin Hall angle θ(SHE) in Ge-p (6-7 x 10(-4) at room temperature, pointing out the essential role of ionized impurities in spin dependent scattering.