Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Nano Lett ; 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33596654

RESUMEN

Safety issues associated with lithium-ion batteries are of major concern, especially with the ever-growing demand for higher-energy-density storage devices. Although flame retardants (FRs) added to electrolytes can reduce fire hazards, large amounts of FRs are required and they severely deteriorate battery performance. Here, we report a feasible method to balance flame retardancy and electrochemical performance by coating an electrolyte-insoluble FR on commercial battery separators. By integrating dual materials via a two-pronged mechanism, the quantity of FR required could be limited to an ultrathin coating layer (4 µm) that rarely influences electrochemical performance. The developed composite separator has a four-times better flame retardancy than conventional polyolefin separators in full pouch cells. Additionally, this separator can be fabricated easily on a large scale for industrial applications. High-energy-density batteries (2 Ah) were assembled to demonstrate the scaling of the composite separator and to confirm its enhanced safety through nail penetration tests.

2.
EMBO Rep ; : e51298, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33594776

RESUMEN

Notch signaling and epigenetic factors are known to play critical roles in regulating tissue homeostasis in most multicellular organisms, but how Notch signaling coordinates with epigenetic modulators to control differentiation remains poorly understood. Here, we identify heterochromatin protein 1c (HP1c) as an essential epigenetic regulator of gut homeostasis in Drosophila. Specifically, we observe that HP1c loss-of-function phenotypes resemble those observed after Notch signaling perturbation and that HP1c interacts genetically with components of the Notch pathway. HP1c represses the transcription of Notch target genes by directly interacting with Suppressor of Hairless (Su(H)), the key transcription factor of Notch signaling. Moreover, phenotypes caused by depletion of HP1c in Drosophila can be rescued by expressing human HP1γ, suggesting that HP1γ functions similar to HP1c in Drosophila. Taken together, our findings reveal an essential role of HP1c in normal development and gut homeostasis by suppressing Notch signaling.

3.
Alzheimers Dement ; 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33559975

RESUMEN

INTRODUCTION: At present, there is limited data on the risks, disparity, and outcomes for COVID-19 in patients with dementia in the United States. METHODS: This is a retrospective case-control analysis of patient electronic health records (EHRs) of 61.9 million adult and senior patients (age ≥ 18 years) in the United States up to August 21, 2020. RESULTS: Patients with dementia were at increased risk for COVID-19 compared to patients without dementia (adjusted odds ratio [AOR]: 2.00 [95% confidence interval (CI), 1.94-2.06], P < .001), with the strongest effect for vascular dementia (AOR: 3.17 [95% CI, 2.97-3.37], P < .001), followed by presenile dementia (AOR: 2.62 [95% CI, 2.28-3.00], P < .001), Alzheimer's disease (AOR: 1.86 [95% CI, 1.77-1.96], P < .001), senile dementia (AOR: 1.99 [95% CI, 1.86-2.13], P < .001) and post-traumatic dementia (AOR: 1.67 [95% CI, 1.51-1.86] P < .001). Blacks with dementia had higher risk of COVID-19 than Whites (AOR: 2.86 [95% CI, 2.67-3.06], P < .001). The 6-month mortality and hospitalization risks in patients with dementia and COVID-19 were 20.99% and 59.26%, respectively. DISCUSSION: These findings highlight the need to protect patients with dementia as part of the strategy to control the COVID-19 pandemic.

4.
Proteomics ; : e2000119, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33580572

RESUMEN

Circulating small extracellular vesicles (sEV) represent promising non-invasive biomarkers that may aid in the diagnosis and risk-stratification of multiple myeloma (MM), an incurable blood cancer. Here, we comprehensively isolated and characterized sEV from human MM cell lines (HMCL) and patient-derived plasma (psEV) by specific EV-marker enrichment and morphology. Importantly, we demonstrate that HMCL-sEV are readily internalised by stromal cells to functionally modulate proliferation. psEV were isolated using various commercial approaches and pre-analytical conditions (collection tube types, storage conditions) assessed for sEV yield and marker enrichment. Functionally, MM-psEV were shown to regulate stromal cell proliferation and migration. In turn, pre-educated stromal cells favour HMCL adhesion. psEV isolated from patients with both pre-malignant plasma cell disorders (monoclonal gammopathy of undetermined significance [MGUS]; smouldering MM [SMM]) and MM have a similar ability to promote cell migration and adhesion, suggesting a role for both malignant and pre-malignant sEV in disease progression. Proteomic profiling of MM-psEV (305 proteins) revealed enrichment of oncogenic factors implicated in cell migration and adhesion, in comparison to non-disease psEV. This study describes a protocol to generate morphologically-intact and biologically functional sEV capable of mediating the regulation of stromal cells, and a model for the characterization of tumour-stromal cross-talk by sEV in MM. This article is protected by copyright. All rights reserved.

5.
Mol Med ; 27(1): 14, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568052

RESUMEN

AIMS: Myocardial ischemia is the most common form of cardiovascular disease and the leading cause of morbidity and mortality. Understanding the mechanisms is very crucial for the development of effective therapy. Therefore, this study aimed to investigate the functional roles and mechanisms by which ELAVL1 regulates myocardial ischemia and reperfusion (I/R) injury. METHODS: Mouse myocardial I/R model and cultured myocardial cells exposed to hypoxia/reperfusion (H/R) were used in this study. Features of ferroptosis were evidenced by LDH activity, GPx4 activity, cellular iron, ROS, LPO, and GSH levels. The expression levels of autophagy markers (Beclin-1, p62, LC3), ELAVL1 and FOXC1 were measured by qRT-PCR, immunostaining and western blot. RIP assay, biotin-pull down, ChIP and dual luciferase activity assay were employed to examine the interactions of ELAVL1/Beclin-1 mRNA and FOXC1/ELAVL1 promoter. CCK-8 assay was used to examine viability of cells. TTC staining was performed to assess the myocardial I/R injury. RESULTS: Myocardial I/R surgery induced ferroptosis and up-regulated ELAVL1 level. Knockdown of ELAVL1 decreased ferroptosis and ameliorated I/R injury. Si-ELAVL1 repressed autophagy and inhibition of autophagy by inhibitor suppressed ferroptosis and I/R injury in myocardial cells. Increase of autophagy could reverse the effects of ELAVL1 knockdown on ferroptosis and I/R injury. ELAVL1 directly bound with and stabilized Beclin-1 mRNA. Furthermore, FOXC1 bound to ELAVL1 promoter region and activated its transcription upon H/R exposure. CONCLUSION: FOXC1 transcriptionally activated ELAVL1 may promote ferroptosis during myocardial I/R by modulating autophagy, leading to myocardial injury. Inhibition of ELAVL1-mediated autophagic ferroptosis would be a new viewpoint in the treatment of myocardial I/R injury.

6.
Commun Biol ; 4(1): 240, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603076

RESUMEN

SARS-CoV-2 is the cause of COVID-19. It infects multiple organs including the respiratory tract and gut. Dynamic changes of regional microbiomes in infected adults are largely unknown. Here, we performed longitudinal analyses of throat and anal swabs from 35 COVID-19 and 19 healthy adult controls, as well as 10 non-COVID-19 patients with other diseases, by 16 S rRNA gene sequencing. The results showed a partitioning of the patients into 3-4 categories based on microbial community types (I-IV) in both sites. The bacterial diversity was lower in COVID-19 patients than healthy controls and decreased gradually from community type I to III/IV. Although the dynamic change of microbiome was complex during COVID-19, a synchronous restoration of both the upper respiratory and gut microbiomes from early dysbiosis towards late more diverse status was observed in 6/8 mild COVID-19 adult patients. These findings reveal previously unknown interactions between upper respiratory and gut microbiomes during COVID-19.

7.
Methods Mol Biol ; 2261: 151-191, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33420989

RESUMEN

Cancer cells secrete membranous extracellular vesicles (EVs) which contain specific oncogenic molecular cargo (including oncoproteins, oncopeptides, and RNA) into their microenvironment and the circulation. As such, EVs including exosomes (small EVs) and microvesicles (large EVs) represent important circulating biomarkers for various diseases, including cancer and its progression. These circulating biomarkers offer a potentially minimally invasive and repeatable targets for analysis (liquid biopsy) that could aid in the diagnosis, risk stratification, and monitoring of cancer. Although their potential as cancer biomarkers has been promising, the identification and quantification of EVs in clinical samples remain challenging. Like EVs, other types of circulating biomarkers (including cell-free nucleic acids, cf-NAs; or circulating tumor cells, CTCs) may represent a complementary or alternative approach to cancer diagnosis. In the context of multiple myeloma (MM), a systemic cancer type that causes cancer cells to accumulate in the bone marrow, the specific role for EVs as biomarkers for diagnosis and monitoring remains undefined. Tumor heterogeneity along with the various subtypes of MM (such as non-secretory MM) that cannot be monitored using conventional testing (e.g. sequential serological testing and bone marrow biopsies) render liquid biopsy and circulating tumor-derived EVs a promising approach. In this protocol, we describe the isolation and purification of EVs from peripheral blood plasma (PBPL) collected from healthy donors and patients with MM for a biomarker discovery strategy. Our results demonstrate detection of circulating EVs from as little as 1 mL of MM patients' PBPL. High-resolution mass spectrometry (MS)-based proteomics promises to provide new avenues in identifying novel markers for detection, monitoring, and therapeutic intervention of disease. We describe biophysical characterization and quantitative proteomic profiling of disease-specific circulating EVs which may provide important implications for the development of cancer diagnostics in MM.

8.
Free Radic Biol Med ; 165: 191-202, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33515753

RESUMEN

Cardiac hypertrophy, an important cause of heart failure, is characterized by an increase in heart weight, the ventricular wall, and cardiomyocyte volume. The volume regulatory anion channel (VRAC) is an important regulator of cell volume. However, its role in cardiac hypertrophy remains unclear. The purpose of this study was to investigate the effect of leucine-rich repeat-containing 8A (LRRC8A), an essential component of the VRAC, on angiotensin II (AngII)-induced cardiac hypertrophy. Our results showed that LRRC8A expression, NADPH oxidase activity, and reactive oxygen species (ROS) production were increased in AngII-induced hypertrophic neonatal mouse cardiomyocytes and the myocardium of C57/BL/6 mice. In addition, AngII activated VRAC currents in cardiomyocytes. The delivery of adeno-associated viral (AAV9) bearing siRNA against mouse LRRC8A into the left ventricular wall inhibited AngII-induced cardiac hypertrophy and fibrosis. Accordingly, the knockdown of LRRC8A attenuated AngII-induced cardiomyocyte hypertrophy and VRAC currents in vitro. Furthermore, knockdown of LRRC8A suppressed AngII-induced ROS production, NADPH oxidase activity, the expression of NADPH oxidase membrane-bound subunits Nox2, Nox4, and p22phox, and the translocation of NADPH oxidase cytosolic subunits p47phox and p67phox. Immunofluorescent staining showed that LRRC8A co-localized with NADPH oxidase membrane subunits Nox2, Nox4, and p22phox. Co-immunoprecipitation and analysis of a C-terminal leucine-rich repeat domain (LRRD) mutant showed that LRRC8A physically interacts with Nox2, Nox4, and p22phox via the LRRD. Taken together, the results of this study suggested that LRRC8A might play an important role in promoting AngII-induced cardiac hypertrophy by interacting with NADPH oxidases via the LRRD.

9.
J Mass Spectrom ; 56(2): e4696, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33421261

RESUMEN

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the microbial identification, especially in the clinical microbiology laboratories. However, although numerous studies on the identification of microorganisms by MALDI-TOF MS have been reported previously, few studies focused on the effect of pretreatment on identification. Due to the sensitivity of MALDI-TOF MS, different preparation methods will lead to changes in microbial protein fingerprints. In this study, for evaluating a more appropriate preparation method for the clinical microbiology identification, we analyzed the performance of three sample preparation methods on two different MALDI-TOF MS systems. A total of 321 clinical isolates, 127 species, were employed in the comparative study of three different sample preparation methods including the direct colony transfer method (DCTM), the on-target extraction method (OTEM), and the in-tube extraction method (ITEM) compatible with MALDI-TOF MS. All isolates were tested on the Microflex LT and Autof ms1000 devices. The spectra were analyzed using the Bruker biotyper and the Autof ms1000 systems. The results were confirmed by 16/18S rRNA sequencing. Results reveal that the accuracies of isolates identification by Bruker biotyper successfully identified 83.8%, 96.0%, and 95.3% after performing the DCTM, OTEM, and ITEM, respectively, while the Autof ms1000 identified 97.5%, 100%, and 99.7%. These data suggested that the identification rates are comparable among the three preparation methods using the Autof ms1000 and Bruker microflex LT systems but the OTEM is more suitable and necessary for clinical application, owing to its key advantages of simplicity and accuracy.

10.
Mol Psychiatry ; 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432189

RESUMEN

Morbidity and mortality from opioid use disorders (OUD) and other substance use disorders (SUD) is a major public health crisis, yet there are few medications to treat them. There is an urgency to accelerate SUD medication development. We present an integrated drug repurposing strategy that combines computational prediction, clinical corroboration using electronic health records (EHRs) of over 72.9 million patients and mechanisms of action analysis. Among top-ranked repurposed candidate drugs, tramadol, olanzapine, mirtazapine, bupropion, and atomoxetine were associated with increased odds of OUD remission (adjusted odds ratio: 1.51 [1.38-1.66], 1.90 [1.66-2.18], 1.38 [1.31-1.46], 1.37 [1.29-1.46], 1.48 [1.25-1.76], p value < 0.001, respectively). Genetic and functional analyses showed these five candidate drugs directly target multiple OUD-associated genes including BDNF, CYP2D6, OPRD1, OPRK1, OPRM1, HTR1B, POMC, SLC6A4 and OUD-associated pathways, including opioid signaling, G-protein activation, serotonin receptors, and GPCR signaling. In summary, we developed an integrated drug repurposing approach and identified five repurposed candidate drugs that might be of value for treating OUD patients, including those suffering from comorbid conditions.

11.
Phytochemistry ; 182: 112606, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33310628

RESUMEN

Six undescribed 1,8,9-phragmalin limonoid orthoesters (chukorthoesters A-F, 1-6) and two undescribed mexicanolide-type limonoids (ivorenoids H and I, 7 and 8), together with ten known limonoids, were isolated from the seeds of common wood-source and greening plants Chukrasia tabularis A. Juss. Their chemical structures were elucidated using HR-ESI-MS, 1D and 2D NMR spectroscopic analysis, and that of 1 along with absolute configuration was confirmed by X-ray diffraction experiment with Cu Kα radiation. Bioactivities screening indicated the limonoid orthoesters 1 and 2 shown reversing resistance in MCF-7/DOX cells at 10 µM (RF:4-5 folds).


Asunto(s)
Limoninas , Meliaceae , Resistencia a Múltiples Medicamentos , Humanos , Limoninas/farmacología , Estructura Molecular , Semillas
12.
Waste Manag ; 121: 77-86, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360308

RESUMEN

A field excavation of refusewitha short-termlandfillage from the Qingdao Xiaojianxi municipal solid waste (MSW) landfill was conducted. The physical composition and chemical properties of refuse with landfill ages of 1-4 years were studied, and the emission characteristics of odorous pollutants during the excavation period were monitored. The refuse aged 1-2 years has a higher proportion of combustible material than that the refuse aged 3-4 years, and the volatile content and calorific value in refuse aged 1-2 years were also higher than those in refuse aged 3-4 years, indicating that the refuse with a short-term landfill age was more suitable for incineration than refuse with a long-term landfill age. The pH and availablephosphorus (AP) gradually increased with increasing landfill age, while the total Kjeldahlnitrogen (TKN) and organic matter (OM) decreased. The contents of the heavy metals Cu, Zn, Ni, Pb and As generally decreased with landfill age, especially in refuse aged 2-4 years, whereas the Cr content showed no significant differences in refuse aged 1-4 years. The main odorous pollutants emitted during the excavation and screening periods were ammonia (NH3) and carbon disulfide (CS2), and the odor intensity of excavated refuse aged 1-3 years was higher than that of refuse aged 4 years. Under the condition of a small excavation area and continuous deodorization, the pollution intensity can meet the discharge standards of the factory boundary.


Asunto(s)
Contaminantes Ambientales , Eliminación de Residuos , Minería , Odorantes , Instalaciones de Eliminación de Residuos
13.
Methods Mol Biol ; 2254: 195-218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33326077

RESUMEN

Long noncoding RNAs (lncRNAs) contain >200 nucleotides and act as regulatory molecules in transcription and translation processes in both normal and pathological conditions. LncRNAs have been reported to localize in nuclei, cytoplasm, and, more recently, extracellular vesicles such as exosomes. Exosomal lncRNAs have gained much attention as exosomes secreted from one cell type can transfer their cargo (e.g., protein, RNA species, and lipids) to recipient cells and mediate phenotypic changes in the recipient cell. In recent years, many exosomal lncRNAs have been discovered and annotated and are attracting much attention as potential markers for disease diagnosis and prognosis. It is expected that many exosomal lncRNAs are yet to be identified. However, characterization of unannotated exosomal RNAs with non-protein-coding sequences from massive RNA sequencing data is technically challenging. Here, we describe a method for the discovery of annotated and unannotated exosomal lncRNA. This method includes a large-scale isolation and purification strategy for exosome subtypes, using the human colorectal cancer cell line (LIM1863) as a model. The method inputs RNA sequencing clean reads and performs transcript assembly to identify annotated and unannotated exosomal lncRNAs. Cutoffs (length, number of exon, classification code, and human protein-coding probability) are used to identify potentially novel exosomal lncRNAs. Raw read count calculation and differential expression analysis are also introduced for downstream analysis and candidate selection. Exosomal lncRNA candidates are validated using RT-qPCR. This method provides a template for exosomal lncRNA discovery and analysis from next-generation RNA sequencing.

14.
Chemosphere ; 262: 127807, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32763577

RESUMEN

Human hair has been identified as a non-invasive alternative matrix for assessing the human exposure to specific organic contaminants. In the present study, a solvent-saving analytical method for the simultaneous determination of 8 polybrominated diphenyl ethers (PBDEs), 3 hexabromocyclododecanes (HBCDDs), 12 phosphorus flame retardants (PFRs), and 4 emerging PFRs (ePFRs) has been developed and validated for the first time. Hair sample preparation protocols include precleaning with Milli-Q water, digestion with HNO3/H2O2 (1:1, v/v), liquid-liquid extraction with hexane:dichloromethane (4:1, v/v), and fractionation and cleanup on a Florisil cartridge. The method was validated by using two levels of spiked hair samples of 3 replicates for each spiking group. Limits of quantification (LOQs) were 0.12-22.4 ng/g for all analytes, average values of accuracies were ranging between 88 and 115%, 82-117%, 81-128%, and 81-95% for PBDEs, HBCDDs, PFRs, and ePFRs, respectively; and precision was also acceptable (RSD < 20%) for all analytes. Eventually, this method was applied to measure the levels of the targeted analytes in hair samples of e-waste dismantling workers (n = 14) from Qingyuan, South China. Median values ranged between 3.00 and 18.1 ng/g for PBDEs, 0.84-4.04 ng/g for HBCDDs, 2.13-131 ng/g PFRs, and 1.49-29.4 ng/g for ePFRs, respectively. PFRs/ePFRs constitute the major compounds in human hair samples, implying the wide use of PFRs/ePFRs as replacements of PBDEs and HBCDDs, as well the potential high human exposure risks of PFRs/ePFRs. Overall, this work will allow to a comprehensive assessment of human exposure to multiple groups of FRs using hair as a non-invasive bioindicator.


Asunto(s)
Retardadores de Llama/análisis , Cabello/química , Éteres Difenilos Halogenados/análisis , Hidrocarburos Bromados/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Peróxido de Hidrógeno/análisis , Extracción Líquido-Líquido , Fósforo/análisis
15.
J Ethnopharmacol ; 265: 113302, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32860893

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Laminaria japonica, a brown seaweed, has been used in Traditional Chinese Medicine (TCM) to treat a variety of diseases including lung cancer. AIM OF THE STUDY: To demonstrate the effects of Fucoxanthin (FX), a major active component extracted from Laminaria japonica on metastasis and Gefitinib (Gef) sensitivity in human lung cancer cells both in vitro and in vivo. MATERIALS AND METHODS: Invasion and migration of lung cancer cells were detected using the wound healing assay and transwell assay. Epithelial-to-mesenchymal transition (EMT) factors and PI3K/AKT/NF-κB pathways were analyzed by western blotting. RNA interference (RNAi) technology was used to silence TIMP-2 gene expression in A549 cells. The anti-metastatic effect of FX was evaluated in vivo in an experimental lung metastatic tumor model. On the other hand, cell counting kit-8 assay was used to study the cell viability of human lung cancer PC9 cells and Gef resistant PC9 cells (PC9/G) after Gef, FX or FX combined with Gef treatment. PC9 xenograft model was established to explore the anti-tumor effect of FX or combined with Gef. Immunohistochemistry staining assay and immunofluorescence staining assay were used to reveal the effects of FX on lung cancer cell proliferation and apoptosis. RESULTS: FX was able to significantly inhibit lung cancer cells migration and invasion in vitro. FX suppressed the expressions of Snail, Twist, Fibronectin, N-cadherin, MMP-2, PI3K, p-AKT and NF-κB, and increased the expression of TIMP-2. Furthermore, knockdown of TIMP-2 attenuated FX-mediated invasion inhibition. Additionally, we demonstrated that FX inhibited lung cancer cells metastasis in vivo. The anti-metastatic effects of FX on lung cancer cells might be attributed to inhibition of EMT and PI3K/AKT/NF-κB pathway. We further demonstrated that the anti-tumor activity of FX was not only limited to the drug sensitive cell lines, but also prominent on lung cancer cells with Gef resistant phenotype. Furthermore, in vivo xenograft assay confirmed that FX inhibited tumor growth and enhanced the sensitivity of lung cancer cells to Gef and this effect may be due to inhibition of tumor cell proliferation and activation of apoptosis. CONCLUSION: Collectively, our findings suggested that FX suppresses metastasis of lung cancer cells and overcomes EGFR TKIs resistance. Thus, FX is worthy of further investigation as a drug candidate for the treatment of lung cancer.

16.
Sci Adv ; 6(49)2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33277246

RESUMEN

Myelin degeneration and white matter loss resulting from oligodendrocyte (OL) death are early events in Alzheimer's disease (AD) that lead to cognitive deficits; however, the underlying mechanism remains unknown. Here, we find that mature OLs in both AD patients and an AD mouse model undergo NLR family pyrin domain containing 3 (NLRP3)-dependent Gasdermin D-associated inflammatory injury, concomitant with demyelination and axonal degeneration. The mature OL-specific knockdown of dynamin-related protein 1 (Drp1; a mitochondrial fission guanosine triphosphatase) abolishes NLRP3 inflammasome activation, corrects myelin loss, and improves cognitive ability in AD mice. Drp1 hyperactivation in mature OLs induces a glycolytic defect in AD models by inhibiting hexokinase 1 (HK1; a mitochondrial enzyme that initiates glycolysis), which triggers NLRP3-associated inflammation. These findings suggest that OL glycolytic deficiency plays a causal role in AD development. The Drp1-HK1-NLRP3 signaling axis may be a key mechanism and therapeutic target for white matter degeneration in AD.

17.
Membranes (Basel) ; 10(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287360

RESUMEN

Microporous organosilica membranes based on 1,2-bis(triethoxylsilyl)ethane (BTESE) were fabricated via an acid-catalyzed sol-gel technique. In the preparation process, the calcination temperature plays a significant role in structural and surface properties of the organosilica networks. With an increase in calcination temperature, the surface hydrophilicity decreased due to the enhanced condensation of Si-OH groups in the networks. N2 adsorption results suggest that the pore structures of BTESE membranes was clearly dependent on the calcination temperature. The pore sizes of the membranes were quantitatively determined by using the Normalized Knudsen-based permeance (NKP) model. In pervaporation tests, the membranes with higher calcination temperatures showed higher salt rejections and lower water permeances, which was attributed to the changes in pore size and surface chemistry of pore walls. The BTESE membranes calcined at 200 °C exhibited superior hydrothermal stability in temperature cycles up to 70 °C and high reproducibility in concentration cycles with NaCl concentrations of 0.2-13 wt%, showing great promise for desalination applications of high-salinity water.

18.
Int J Nanomedicine ; 15: 9587-9610, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33293809

RESUMEN

Bacterial infections are the main infectious diseases and cause of death worldwide. Antibiotics are used to treat various infections ranging from minor to life-threatening ones. The dominant route to administer antibiotics is through oral delivery and subsequent gastrointestinal tract (GIT) absorption. However, the delivery efficiency is limited by many factors such as low drug solubility and/or permeability, gastrointestinal instability, and low antibacterial activity. Nanotechnology has emerged as a novel and efficient tool for targeting drug delivery, and a number of promising nanotherapeutic strategies have been widely explored to overcome these obstacles. In this review, we explore published studies to provide a comprehensive understanding of the recent progress in the area of orally deliverable nano-antibiotic formulations. The first part of this article discusses the functions and underlying mechanisms by which nanomedicines increase the oral absorption of antibiotics. The second part focuses on the classification of oral nano-antibiotics and summarizes the advantages, disadvantages and applications of nanoformulations including lipid, polymer, nanosuspension, carbon nanotubes and mesoporous silica nanoparticles in oral delivery of antibiotics. Lastly, the challenges and future perspective of oral nano-antibiotics for infection disease therapy are discussed. Overall, nanomedicines designed for oral drug delivery system have demonstrated the potential for the improvement and optimization of currently available antibiotic therapies.

19.
JAMA Oncol ; 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33300956

RESUMEN

Importance: Patients with specific cancers may be at higher risk than those without cancer for coronavirus disease 2019 (COVID-19) and its severe outcomes. At present, limited data are available on the risk, racial disparity, and outcomes for COVID-19 illness in patients with cancer. Objectives: To investigate how patients with specific types of cancer are at risk for COVID-19 infection and its adverse outcomes and whether there are cancer-specific race disparities for COVID-19 infection. Design, Setting, and Participants: This retrospective case-control analysis of patient electronic health records included 73.4 million patients from 360 hospitals and 317 000 clinicians across 50 US states to August 14, 2020. The odds of COVID-19 infections for 13 common cancer types and adverse outcomes were assessed. Exposures: The exposure groups were patients diagnosed with a specific cancer, whereas the unexposed groups were patients without the specific cancer. Main Outcomes and Measures: The adjusted odds ratio (aOR) and 95% CI were estimated using the Cochran-Mantel-Haenszel test for the risk of COVID-19 infection. Results: Among the 73.4 million patients included in the analysis (53.6% female), 2 523 920 had at least 1 of the 13 common cancers diagnosed (all cancer diagnosed within or before the last year), and 273 140 had recent cancer (cancer diagnosed within the last year). Among 16 570 patients diagnosed with COVID-19, 1200 had a cancer diagnosis and 690 had a recent cancer diagnosis of at least 1 of the 13 common cancers. Those with recent cancer diagnosis were at significantly increased risk for COVID-19 infection (aOR, 7.14 [95% CI, 6.91-7.39]; P < .001), with the strongest association for recently diagnosed leukemia (aOR, 12.16 [95% CI, 11.03-13.40]; P < .001), non-Hodgkin lymphoma (aOR, 8.54 [95% CI, 7.80-9.36]; P < .001), and lung cancer (aOR, 7.66 [95% CI, 7.07-8.29]; P < .001) and weakest for thyroid cancer (aOR, 3.10 [95% CI, 2.47-3.87]; P < .001). Among patients with recent cancer diagnosis, African Americans had a significantly higher risk for COVID-19 infection than White patients; this racial disparity was largest for breast cancer (aOR, 5.44 [95% CI, 4.69-6.31]; P < .001), followed by prostate cancer (aOR, 5.10 [95% CI, 4.34-5.98]; P < .001), colorectal cancer (aOR, 3.30 [95% CI, 2.55-4.26]; P < .001), and lung cancer (aOR, 2.53 [95% CI, 2.10-3.06]; P < .001). Patients with cancer and COVID-19 had significantly worse outcomes (hospitalization, 47.46%; death, 14.93%) than patients with COVID-19 without cancer (hospitalization, 24.26%; death, 5.26%) (P < .001) and patients with cancer without COVID-19 (hospitalization, 12.39%; death, 4.03%) (P < .001). Conclusions and Relevance: In this case-control study, patients with cancer were at significantly increased risk for COVID-19 infection and worse outcomes, which was further exacerbated among African Americans. These findings highlight the need to protect and monitor patients with cancer as part of the strategy to control the pandemic.

20.
J Diabetes Res ; 2020: 9815485, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33381601

RESUMEN

Objective: The accelerate loss of skeletal muscle mass, strength, and function, named sarcopenia, is a progressive and generalised skeletal muscle disorder, and it is always associated with increased outcomes including falls, frailty, and disability. Diabetes mellitus is associated with significant muscle and physical complications. We aimed at clarifying the changes and risk factors of skeletal muscle mass and strength in elderly with type 2 diabetes. Methods: The study consisted of patients with type 2 diabetes (n = 120) and an older general population (n = 126). The skeletal muscle mass and muscle strength, as well as the serum levels of chronic inflammation, oxidative stress, homocysteine, and insulin-like factor-1 were assessed, and the correlation and regression analysis were conducted to evaluate outcomes. Results: T2DM patients exhibited lower muscle strength compared with the non-T2DM subjects (P < 0.01). Among T2DM patients, serum IGF-1 levels were positively correlated with muscle strength (r = 0.255, P < 0.01) and muscle mass (r = 0.209, P < 0.05), levels of 8-OHdG were inversely correlated with muscle strength (r = -0.252, P < 0.01), and there was a negative association between HCY and muscle mass (r = -0.185, P < 0.05). Muscle mass and strength of patients with higher education level were significantly higher than those with lower education level (P < 0.05), in male patients, muscle mass and muscle strength were significantly lower in smokers (P < 0.01), and muscle mass was lower in chronic drinkers (P < 0.05). Conclusions: These findings suggest that diabetic patients may be more susceptible to sarcopenia at an older age. And it also provides evidences that among elderly with diabetes mellitus, oxidative damage and HCY as well as IGF-1 are important predictors of age-dependent sarcopenia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA