Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Más filtros

Base de datos
Intervalo de año de publicación
Food Chem ; 341(Pt 1): 128148, 2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-33038776


The brown seaweed Undaria pinnatifida polysaccharides show various biological activities, but their hypoglycemic activity and the underlying mechanism remain unclear. Here, three fractions of sulfated polysaccharides Up-3, Up-4, and Up-5 were prepared by microwave-assisted extraction from U. pinnatifida. In vitro assays demonstrated that Up-3 and Up-4 had strong α-glucosidase inhibitory activity, and Up-3, Up-4, and Up-5 could improve the glucose uptake in insulin-resistant HepG2 cells without affecting their viability. In vivo studies indicated Up-3 and Up-4 markedly reduced postprandial blood glucose levels. Up-U (a mixture of Up-3, Up-4, and Up-5), reduced fasting blood glucose levels, increased glucose tolerance and alleviated insulin resistance in HFD/STZ-induced hyperglycemic mice. Histopathological observation and hepatic glycogen measurement showed that Up-U alleviated the damage of the pancreas islet cell, reduced hepatic steatosis, and promoted hepatic glycogen synthesis. These findings suggest that Up-U could alleviate postprandial and HFD/STZ-induced hyperglycemia and was a potential agent for diabetes treatment.

Mar Drugs ; 18(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867177


A low fasting blood glucose level is a common symptom in diabetes patients and can be induced by high-fat diet (HFD) feeding at an early stage, which may play important roles in the development of diabetes, but has received little attention. In this study, five polysaccharides were prepared from Sargassumfusiforme and their effects on HFD-induced fasting hypoglycemia and gut microbiota dysbiosis were investigated. The results indicated that C57BL/6J male mice fed an HFD for 4 weeks developed severe hypoglycemia and four Sargassumfusiforme polysaccharides (SFPs), consisting of Sf-2, Sf-3, Sf-3-1, and Sf-A, significantly prevented early fasting hypoglycemia without inducing hyperglycemia. Sf-1 and Sf-A could also significantly prevent HFD-induced weight gain. Sf-2, Sf-3, Sf-3-1, and Sf-A mainly attenuated the HFD-induced decrease in Bacteroidetes, and all five SFPs had a considerable influence on the relative abundance of Oscillospira, Mucispirillum, and Clostridiales. Correlation analysis revealed that the fasting blood glucose level was associated with the relative abundance of Mucispinllum and Oscillospira. Receiver operating characteristic analysis indicated that Mucispinllum and Oscillospira exhibited good discriminatory power (AUC = 0.745-0.833) in the prediction of fasting hypoglycemia. Our findings highlight the novel application of SFPs (especially Sf-A) in glucose homeostasis and the potential roles of Mucispinllum and Oscillospira in the biological activity of SFPs.

J Enzyme Inhib Med Chem ; 35(1): 1736-1742, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32928007


Gut microbial ß-glucuronidases have the ability to deconjugate glucuronides of some drugs, thus have been considered as an important drug target to alleviate the drug metabolites-induced gastrointestinal toxicity. In this study, thiazolidin-2-cyanamide derivatives containing 5-phenyl-2-furan moiety (1-13) were evaluated for inhibitory activity against Escherichia coli ß-glucuronidase (EcGUS). All of them showed more potent inhibition than a commonly used positive control, d-saccharic acid 1,4-lactone, with the IC50 values ranging from 1.2 µM to 23.1 µM. Inhibition kinetics studies indicated that compound 1-3 were competitive type inhibitors for EcGUS. Molecular docking studies were performed and predicted the potential molecular determinants for their potent inhibitory effects towards EcGUS. Structure-inhibitory activity relationship study revealed that chloro substitution on the phenyl moiety was essential for EcGUS inhibition, which would help researchers to design and develop more effective thiazolidin-2-cyanamide type inhibitors against EcGUS.

J Enzyme Inhib Med Chem ; 35(1): 1372-1378, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32571102


Gut microbial ß-glucuronidase (GUS) is a potential therapeutic target to reduce gastrointestinal toxicity caused by irinotecan. In this study, the inhibitory effects of 17 natural cinnamic acid derivatives on Escherichia coli GUS (EcGUS) were characterised. Seven compounds, including caffeic acid ethyl ester (CAEE), had a stronger inhibitory effect (IC50 = 3.2-22.2 µM) on EcGUS than the positive control, D-glucaric acid-1,4-lactone. Inhibition kinetic analysis revealed that CAEE acted as a competitive inhibitor. The results of molecular docking analysis suggested that CAEE bound to the active site of EcGUS through interactions with Asp163, Tyr468, and Glu504. In addition, structure-activity relationship analysis revealed that the presence of a hydrogen atom at R1 and bulky groups at R9 in cinnamic acid derivatives was essential for EcGUS inhibition. These data are useful to design more potent cinnamic acid-type inhibitors of EcGUS.