Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.694
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39300808

RESUMEN

Regulating the selective generation of reactive oxygen species (ROS) is a significant challenge in the field of photocatalytic oxidation, with successful approaches still being limited. Herein, we present a strategy to selectively generate singlet oxygen (1O2) and superoxide radicals (O2•-) by tuning the dimensionality of porphyrin-based covalent organic frameworks (COFs). The transformation of COFs from three-dimensional (3D) solids to two-dimensional (2D) sheets was achieved through the reversible protonation of the imine bond. Upon irradiation, both bulk and thin-layer COF-367 can transfer energy to O2 to generate 1O2. However, thin-layer COF-367 exhibited a superior performance compared to its bulk counterpart in activating O2 to form the O2•- radicals via electron transfer. After excluding the influences of the band structure, O2 adsorption energy, and frontier orbital composition attributed to the dimensionality of the COFs, it is reasonably speculated that the variance in ROS generation arises from the differential exposure ratios of the active surfaces, leading to distinct reaction pathways between the carrier and O2. This study is the first to explore the modulation mechanism of COF dimensionality on the activation of the O2 pathway, underscoring the importance of considering COF dimensionality in photocatalytic reactions.

2.
Biometals ; 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39306617

RESUMEN

Anthraquinones (AQs) are very effective chemotherapeutic agent, however their fundamental shortcoming is high cardiotoxicity caused by reactive oxygen species (ROS). Therefore, development of improved antitumor drugs with enhanced efficacy but reduced side effects remains a high priority. In the present study we evaluated the cytotoxicity and ROS generation activity of chelate complex of redox-active anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione (Q1) with iron and copper ions. Cytotoxicity study was performed using the lung cancer cell line A549 and breast cancer cell line MDA-MB-231. Q1 and Cu-Q1 complex demonstrate high activity in these experiments, but Fe-Q1 complex inactive. The ROS generation activity has been studied by EPR spin trapping technique using A549, MDA-MB-231 cell lines, and T lymphoblast cell line MOLT-4. It was shown that Q1 is able to penetrate into these cells and participate in redox reactions with the formation of a semiquinone radical. Fe(III) chelate complex formation results in much slower kinetics of ROS generation compared with pure Q1, which could be connected with a lower penetration through the cell membrane.

3.
Chemosphere ; 365: 143342, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293686

RESUMEN

Tetrabromobisphenol A bis (allyl ether) (TBBPA-BAE) represents an extensively used brominated flame retardant (BFRs) in the production of many fields and their phototransformation in natural water is still unclear. The environmentally persistent free radicals (EPFRs) with preserved activities could exist in the environment for a long time and involve in the phototransformation of many organic pollutants. Here, the photodegradation of TBBPA-BAE with the degradation rate constant (k = 0.060 h-1) under simulate sunlight and the promoting effect of EPFRs on TBBPA-BAE photodegradation (k = 0.135 h-1) were investigated. According to the detected photogenerated electrons (e-) and singlet oxygen (1O2) rather than hydroxyl radicals (•OH) by the electron paramagnetic resonance (EPR), the effect mechanism may not be related to the typical •OH induced by EPFRs. The possible transformation pathways of the ether cleavage, hydrolysis and hydroxylation of propenyl bond and the debromination were proposed by the primary byproducts identified by UPLC-Q-Exactive Orbitrap MS. EPFRs caused a further debromination and ether cleavage and probably be due to EPFRs directly providing electrons to TBBPA-BAE which promoted the photodegradation of TBBPA-BAE, and their reaction mechanism needed further attention. Overall, this study provided useful information to understand the role of EPFRs on phototransformation of TBBPA-BAE in water.

4.
Angew Chem Int Ed Engl ; : e202415684, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259433

RESUMEN

The stepwise reduction of the highly contorted truxene-based triphosphaalkene 1 using KC8 led to the isolation of mono-, di-and tri-anionic species. The solid-state molecular structures of mono- and diradical anionic species were elucidated by single crystal X-ray diffractions, revealing elongated P-C bonds and a pronounced "indene" aromatization compared to the parent system. All three radical species displayed distinct Electron Paramagnetic Resonance (EPR) spectra, providing compelling evidence for the open-shell electronic configuration of both the diradical and triradical species-an observation unprecedented in any previously reported phosphorous-based anionic polyradicals. Mulliken spin density calculations revealed a dominant localization of radical spin on a single phosphorous atom in the monoanion. In the dianion, spin localization is observed on two phosphorous atoms (~34% each), with a minor contribution from the third phosphorous (0.13%), while the trianion demonstrates a uniform distribution of spin density (~30%) across each phosphorous atom.

5.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273518

RESUMEN

Cladosporium cladosporioides are the pigmented soil fungi containing melanin. The aim of this work was to determine the influence of amphotericin B on free radicals in the natural melanin isolated from pigmented fungi Cladosporium cladosporioides and to compare it with the effect in synthetic DOPA-melanin. Electron paramagnetic resonance (EPR) spectra were measured at X-band (9.3 GHz) with microwave power in the range of 2.2-70 mW. Amplitudes, integral intensities, linewidths of the EPR spectra, and g factors, were analyzed. The concentrations of free radicals in the tested melanin samples were determined. Microwave saturation of EPR lines indicates the presence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. o-Semiquinone free radicals in concentrations ~1020 [spin/g] exist in the tested melanin samples and in their complexes with amphotericin B. Changes in concentrations of free radicals in the examined synthetic and natural melanin point out their participation in the formation of amphotericin B binding to melanin. A different influence of amphotericin B on free radical concentration in Cladosporium cladosporioides melanin and in DOPA-melanin may be caused by the occurrence of pheomelanin in addition to eumelanin in Cladosporium cladosporioides. The advanced spectral analysis in the wide range of microwave powers made it possible to compare changes in the free radical systems of different melanin polymers. This study is important for knowledge about the role of free radicals in the interactions of melanin with drugs.


Asunto(s)
Anfotericina B , Cladosporium , Melaninas , Melaninas/metabolismo , Cladosporium/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Anfotericina B/farmacología , Radicales Libres/metabolismo , Dihidroxifenilalanina/química , Dihidroxifenilalanina/metabolismo , Dihidroxifenilalanina/análogos & derivados
6.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274619

RESUMEN

In this study, xCaO‧5Fe2O3‧(95-x)Pb glasses and vitroceramics containing various concentrations of calcium ions (from 0 to 50 mol% CaO) were prepared using the spent anodic plate of a car battery. X-ray diffraction analysis revealed changes in the network structure as a function of CaO content. The intensities of the IR bands due to the sulfate and sulfite units were lowered, indicating a decrease in the sulfurization degree within the lead network. In the UV-vis spectra, the presence of electronic transitions of the Fe3+, Pb2+, and Fe2+ ions were identified. The EPR spectra were characterized by resonance signals centered at about g ~ 2 and 4.3, corresponding to the trivalent iron ions. For the samples with 5 ≤ x ≤ 12, the signals decreased abruptly, suggesting a Fe3+→Fe2+ interconversion and the formation of the Fe3O4 crystalline phase. A considerable increase in the intensity of the signal centered around g ~ 2 was observed as the CaO concentration increased to 30% in the host matrix. Our results confirm that the higher CaO levels of 3 mol% are responsible for the increase in the radius of curvature of the semicircle arcs in the EIS plots and the decrease in their conductivity.

7.
Bioorg Chem ; 153: 107806, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39255611

RESUMEN

Iron is an essential micronutrient for almost every living organism, namely pathogenic bacteria. In an infection scenario, host-pathogen competitive relationships for the element are present and Fe withholding is a well known response of the host. Also, bacterial resistance is a major concern that can compromise public health and the WHO underlines an urgent need to search for new pharmaceutical ingredients or strategies to fight opportunistic bacteria. Iron metabolism, and in particular, deprivation is a strategy that currently constitutes another option to fight bacterial infection. In this work we report the synthesis of a new hexadentate chelator with enhanced hydrophilicity (MRHT) and the improved synthesis of two other chelators. The affinity towards charged and non-charged phospholipid bilayers was evaluated for three hexadentate chelators: MRHT, CP256 and RH8b using NMR and EPR spectroscopies. The results revealed that these structures, bearing 3,4-HPO units have a high affinity towards the hydrophilic region of the phospholipid bilayer. From the three hexadentate chelators, MRHT stood out, especially for liposomes with a charged surface, suggesting that this molecule could more efficiently compete with natural siderophores, creating an iron gradient near bacteria organisms.

8.
Elife ; 132024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283059

RESUMEN

Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure-function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Proteínas , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas/química , Biología Computacional/métodos
9.
Biochim Biophys Acta Bioenerg ; 1866(1): 149508, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245309

RESUMEN

The NAD+-reducing soluble [NiFe] hydrogenase (SH) is the key enzyme for production and consumption of molecular hydrogen (H2) in Synechocystis sp. PCC6803. In this study, we focused on the reductase module of the SynSH and investigated the structural and functional aspects of its subunits, particularly the so far elusive role of HoxE. We demonstrated the importance of HoxE for enzyme functionality, suggesting a regulatory role in maintaining enzyme activity and electron supply. Spectroscopic analysis confirmed that HoxE and HoxF each contain one [2Fe2S] cluster with an almost identical electronic structure. Structure predictions, alongside experimental evidence for ferredoxin interactions, revealed a remarkable similarity between SynSH and bifurcating hydrogenases, suggesting a related functional mechanism. Our study unveiled the subunit arrangement and cofactor composition essential for biological electron transfer. These findings enhance our understanding of NAD+-reducing [NiFe] hydrogenases in terms of their physiological function and structural requirements for biotechnologically relevant modifications.

10.
Chemistry ; : e202402719, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221513

RESUMEN

The combination of continuous wave electron paramagnetic resonance (cw-EPR) with electrochemistry is highly attractive as it allows a clean in-situ generation and the subsequent spectroscopic characterisation of radical ions, which are important intermediates in many photocatalytic cycles as well as light-induced processes occurring in biological systems or optoelectronic devices. Although commercial setups for spectroelectrochemical EPR are available, they are often expensive and tailored to a particular spectroscopic setup.  Here we present a design for a low-cost electrochemical EPR cell that can be used in combination with any commercial cw-EPR instrumentation. The cell design is compared to existing setups and the performance of the cell is evaluated by comparison of EPR spectra obtained by chemical and electrochemical oxidation of a graphene fragment.

11.
J Biol Chem ; 300(9): 107626, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39098528

RESUMEN

With the increasing use of vaping devices that deliver high levels of nicotine (NIC) to the lungs, sporadic lung injury has been observed. Commercial vaping solutions can contain high NIC concentrations of 150 mM or more. With high NIC levels, its metabolic products may induce toxicity. NIC is primarily metabolized to form NIC iminium (NICI) which is further metabolized by aldehyde oxidase (AOX) to cotinine. We determine that NICI in the presence of AOX is a potent trigger of superoxide generation. NICI stimulated superoxide generation from AOX with Km = 2.7 µM and Vmax = 794 nmol/min/mg measured by cytochrome-c reduction. EPR spin-trapping confirmed that NICI in the presence of AOX is a potent source of superoxide. AOX is expressed in the lungs and chronic e-cigarette exposure in mice greatly increased AOX expression. NICI or NIC stimulated superoxide production in the lungs of control mice with an even greater increase after chronic e-cigarette exposure. This superoxide production was quenched by AOX inhibition. Furthermore, e-cigarette-mediated NIC delivery triggered oxidative lung damage that was blocked by AOX inhibition. Thus, NIC metabolism triggers AOX-mediated superoxide generation that can cause lung injury. Therefore, high uncontrolled levels of NIC inhalation, as occur with e-cigarette use, can induce oxidative lung damage.

12.
Biochim Biophys Acta Biomembr ; 1866(7): 184377, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103068

RESUMEN

KCNQ1, also known as Kv7.1, is a voltage gated potassium channel that associates with the KCNE protein family. Mutations in this protein has been found to cause a variety of diseases including Long QT syndrome, a type of cardiac arrhythmia where the QT interval observed on an electrocardiogram is longer than normal. This condition is often aggravated during strenuous exercise and can cause fainting spells or sudden death. KCNE1 is an ancillary protein that interacts with KCNQ1 in the membrane at varying molar ratios. This interaction allows for the flow of potassium ions to be modulated to facilitate repolarization of the heart. The interaction between these two proteins has been studied previously with cysteine crosslinking and electrophysiology. In this study, electron paramagnetic resonance (EPR) spectroscopy line shape analysis in tandem with site directed spin labeling (SDSL) was used to observe changes in side chain dynamics as KCNE1 interacts with KCNQ1. KCNE1 was labeled at different sites that were found to interact with KCNQ1 based on previous literature, along with sites outside of that range as a control. Once labeled KCNE1 was incorporated into vesicles, KCNQ1 (helices S1-S6) was titrated into the vesicles. The line shape differences observed upon addition of KCNQ1 are indicative of an interaction between the two proteins. This method provides a first look at the interactions between KCNE1 and KCNQ1 from a dynamics perspective using the full transmembrane portion of KCNQ1.


Asunto(s)
Canal de Potasio KCNQ1 , Canales de Potasio con Entrada de Voltaje , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/química , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Unión Proteica , Humanos , Animales , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/genética
13.
J Biol Chem ; 300(9): 107711, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178945

RESUMEN

The kinetics of iron trafficking in whole respiring Saccharomyces cerevisiae cells were investigated using Mössbauer and EPR spectroscopies. The Mössbauer-active isotope 57Fe was added to cells growing under iron-limited conditions; cells were analyzed at different times post iron addition. Spectroscopic changes suggested that the added 57Fe initially entered the labile iron pool, and then distributed to vacuoles and mitochondria. The first spectroscopic feature observed, ∼ 3 min after adding 57Fe plus a 5 to 15 min processing dead time, was a quadrupole doublet typical of nonheme high-spin FeII. This feature likely arose from labile FeII pools in the cell. At later times (15-150 min), magnetic features due to S = 5/2 FeIII developed; these likely arose from FeIII in vacuoles. Corresponding EPR spectra were dominated by a g = 4.3 signal from the S = 5/2 FeIII ions that increased in intensity over time. Developing at a similar rate was a quadrupole doublet typical of S = 0 [Fe4S4]2+ clusters and low-spin FeII hemes; such centers are mainly in mitochondria, cytosol, and nuclei. Development of these features was simulated using a published mathematical model, and simulations compared qualitatively well with observations. In the five sets of experiments presented, all spectroscopic features developed within the doubling time of the cells, implying that the detected iron trafficking species are physiologically relevant. These spectroscopy-based experiments allow the endogenous labile iron pool within growing cells to be detected without damaging or altering the pool, as definitely occurs using chelator-probe detection and possibly occurs using chromatographic separations.

14.
Int J Biol Macromol ; 278(Pt 1): 134598, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127279

RESUMEN

This work reports for the first time the production of condensed tannin nanoparticles stable in water via modification with glycine betaine. Pine bark, as a byproduct from the paper industry, was used as a source of condensed tannins of high molecular weight. Different glycine betaine concentrations were tested to produce condensed tannin nanoparticles, and the obtained nanoparticles were subjected to several characterization techniques (Dynamic Light Scattering, Field emission scanning electron microscopy, Zeta potential, Fourier transform infrared spectroscopy-Attenuated total reflectance, thermogravimetric analysis). The results showed that the highest stability possessed nanoparticles with 40 wt% glycine betaine. The average particle size distribution evaluated by scanning microscopy was 124 nm. Besides, the glycine betaine-modified condensed tannin nanoparticles demonstrated higher thermal stability with the starting degradation temperature at 238 °C. Finally, obtained nanoparticles showed an antioxidant capacity of 34,209 ± 2194 µmol ET/100 g and low cytotoxicity towards healthy human cells, representing the high potential to be used as a carrier of active compounds in agriculture, food, drug and medical sector.


Asunto(s)
Tecnología Química Verde , Nanopartículas , Pinus , Corteza de la Planta , Agua , Pinus/química , Nanopartículas/química , Corteza de la Planta/química , Tecnología Química Verde/métodos , Agua/química , Humanos , Antioxidantes/química , Antioxidantes/farmacología , Tamaño de la Partícula , Proantocianidinas/química , Taninos/química , Betaína/química , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Biol Inorg Chem ; 29(6): 611-623, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39136772

RESUMEN

Nitric oxide synthases (NOSs), a family of flavo-hemoproteins with relatively rigid domains linked by flexible regions, require optimal FMN domain docking to the heme domain for efficient interdomain electron transfer (IET). To probe the FMN-heme interdomain docking, the magnetic dipole interactions between the FMN semiquinone radical (FMNH•) and the low-spin ferric heme centers in oxygenase/FMN (oxyFMN) constructs of neuronal and inducible NOS (nNOS and iNOS, respectively) were measured using the relaxation-induced dipolar modulation enhancement (RIDME) technique. The FMNH• RIDME data were analyzed using the mesoscale Monte Carlo calculations of conformational distributions of NOS, which were improved to account for the native degrees of freedom of the amino acid residues constituting the flexible interdomain tethers. This combined computational and experimental analysis allowed for the estimation of the stabilization energies and populations of the docking complexes of calmodulin (CaM) and the FMN domain with the heme domain. Moreover, combining the five-pulse and scaled four-pulse RIDME data into a single trace has significantly reduced the uncertainty in the estimated docking probabilities. The obtained FMN-heme domain docking energies for nNOS and iNOS were similar (-3.8 kcal/mol), in agreement with the high degree of conservation of the FMN-heme domain docking interface between the NOS isoforms. In spite of the similar energetics, the FMN-heme domain docking probabilities in nNOS and iNOS oxyFMN were noticeably different (~ 0.19 and 0.23, respectively), likely due to differences in the lengths of the FMN-heme interdomain tethers and the docking interface topographies. The analysis based on the IET theory and RIDME experiments indicates that the variations in conformational dynamics may account for half of the difference in the FMN-heme IET rates between the two NOS isoforms.


Asunto(s)
Mononucleótido de Flavina , Hemo , Óxido Nítrico Sintasa de Tipo II , Animales , Ratas , Espectroscopía de Resonancia por Spin del Electrón , Mononucleótido de Flavina/metabolismo , Mononucleótido de Flavina/química , Hemo/química , Hemo/metabolismo , Modelos Moleculares , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , Conformación Proteica , Dominios Proteicos , Humanos
16.
Angew Chem Int Ed Engl ; : e202410458, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172510

RESUMEN

The synthesis of diradical organic compounds has garnered significant attention due to their thermally accessible spin inversion and optoelectronic properties. Yet, preparing such stable structures with high open-shell behavior remains challenging. Herein, we report the synthesis and properties of four π-extended, fused fluorene derivatives with high diradical character, taking advantage of a molecular design where the closed-shell does not include any Clar sextet, comparatively to a maximum of 5 in the corresponding open-shell state. This led to an unusual open-shell triplet ground state with an outstanding singlet-triplet energy difference (ΔEST) of ca. 19 kcal/mol, one of the highest values reported to date for an all-carbon conjugated scaffold. Incorporation of dithiafulvene units at each end of the molecule (at the five-membered rings) furnishes extended tetrathiafulvalenes (TTFs) undergoing reversible oxidations to the radical cation and diradical dication. The various pro-aromatic structures presented herein show highly localized spin density and a limited conjugation due to the confined π-electrons in the aromatic cycles, as supported by 1H NMR, UV-visible, EPR spectroscopy and DFT calculations.

17.
J Magn Reson ; 366: 107744, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096714

RESUMEN

We present field-domain rapid-scan (RS) electron paramagnetic resonance (EPR) at 8.6T and 240GHz. To enable this technique, we upgraded a home-built EPR spectrometer with an FPGA-enabled digitizer and real-time processing software. The software leverages the Hilbert transform to recover the in-phase (I) and quadrature (Q) channels, and therefore the raw absorptive and dispersive signals, χ' and χ'', from their combined magnitude (I2+Q2). Averaging a magnitude is simpler than real-time coherent averaging and has the added benefit of permitting long-timescale signal averaging (up to at least 2.5×106 scans) because it eliminates the effects of source-receiver phase drift. Our rapid-scan (RS) EPR provides a signal-to-noise ratio that is approximately twice that of continuous wave (CW) EPR under the same experimental conditions, after scaling by the square root of acquisition time. We apply our RS EPR as an extension of the recently reported time-resolved Gd-Gd EPR (TiGGER) [Maity et al., 2023], which is able to monitor inter-residue distance changes during the photocycle of a photoresponsive protein through changes in the Gd-Gd dipolar couplings. RS, opposed to CW, returns field-swept spectra as a function of time with 10ms time resolution, and thus, adds a second dimension to the static field transients recorded by TiGGER. We were able to use RS TiGGER to track time-dependent and temperature-dependent kinetics of AsLOV2, a light-activated phototropin domain found in oats. The results presented here combine the benefits of RS EPR with the improved spectral resolution and sensitivity of Gd chelates at high magnetic fields. In the future, field-domain RS EPR at high magnetic fields may enable studies of other real-time kinetic processes with time resolutions that are otherwise difficult to access in the solution state.


Asunto(s)
Proteínas , Temperatura , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas/química , Algoritmos , Programas Informáticos , Relación Señal-Ruido
18.
Biomolecules ; 14(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39199275

RESUMEN

Pulsed electron-electron double resonance (PELDOR) spectroscopy is a powerful method for determining nucleic acid (NA) structure and conformational dynamics. PELDOR with molecular dynamics (MD) simulations opens up unique possibilities for defining the conformational ensembles of flexible, three-dimensional, self-assembled complexes of NA. Understanding the diversity and structure of these complexes is vital for uncovering matrix and regulative biological processes in the human body and artificially influencing them for therapeutic purposes. To explore the reliability of PELDOR and MD simulations, we site-specifically attached nitroxide spin labels to oligonucleotides, which form self-assembled complexes between NA chains and exhibit significant conformational flexibility. The DNA complexes assembled from a pair of oligonucleotides with different linker sizes showed excellent agreement between the distance distributions obtained from PELDOR and calculated from MD simulations, both for the mean inter-spin distance and the distance distribution width. These results prove that PELDOR with MD simulations has significant potential for studying the structure and dynamics of conformational flexible complexes of NA.


Asunto(s)
Simulación de Dinámica Molecular , Oligonucleótidos , Marcadores de Spin , Espectroscopía de Resonancia por Spin del Electrón/métodos , Oligonucleótidos/química , Conformación de Ácido Nucleico , ADN/química
19.
Int J Mol Sci ; 25(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39201730

RESUMEN

The natural aromatic polymer lignin and its lignin-like oligomeric fragments have attracted attention for their antioxidant capacity and free radical scavenging activities. In this study, a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was employed to assess the antioxidant capacity of fractionated and partially depolymerized organosolv lignin by electron paramagnetic resonance (EPR) and UV-Vis spectroscopy. The results show significant antioxidant activity for both the lignin and oligomeric fragments, with the EPR measurements demonstrating their efficiency in quenching the free radicals. The EPR data were analyzed to derive the kinetic rate constants. The radical scavenging activity (RSA) of lignins was then determined by UV-Vis spectroscopy and the results were compared with the EPR method. This two-method approach improves the reliability and understanding of the antioxidant potential of lignin and its derivatives and provides valuable insights for their potential applications in various industries, including pharmaceuticals, food preservation, and cosmetics.


Asunto(s)
Antioxidantes , Compuestos de Bifenilo , Lignina , Picratos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Lignina/química , Compuestos de Bifenilo/química , Picratos/química , Antioxidantes/química , Antioxidantes/farmacología , Espectrofotometría Ultravioleta , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología
20.
Angew Chem Int Ed Engl ; : e202407395, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137132

RESUMEN

Copper-exchanged zeolite omega (Cu-omega) is a potent material for the selective conversion of methane-to-methanol (MtM) via the oxygen looping approach. However, its performance exhibits substantial variation depending on the operational conditions. Under an isothermal temperature regime, Cu-omega demonstrates subdued activity below 230 °C, but experiences a remarkable increase in activity at 290 °C. Applying a high-temperature activation protocol at 450 °C causes a rapid deactivation of the material. This behavioral divergence is investigated by combining reactivity studies, neutron and in situ high-resolution anomalous X-ray powder diffraction (HR-AXRPD), as well as electron paramagnetic resonance spectroscopy, to reveal that the migration of Cu throughout the framework is the primary cause of these behaviors, which in turn is governed by the degree of hydration of the system. This work suggests that control over the Cu migration throughout the zeolite framework may be harnessed to significantly increase the activity of Cu-omega by generating more active sites for the MtM conversion. These results underscore the power of in situ HR-AXRPD for unraveling the behavior of materials under reaction conditions and suggest that a re-evaluation of Cu-zeolites priorly deemed inactive for the MtM conversion across a broader range of conditions and looping protocols may be warranted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA