Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 280: 116519, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833977

RESUMEN

The indiscriminate use of zinc oxide nanoparticles (ZnO NPs) in daily life can lead to their release into soil environment. These ZnO NPs can be taken up by crops and translocated to their edible part, potentially causing risks to the ecosystem and human health. In this study, we conducted pot experiments to determine phytotoxicity, bioaccumulation and translocation depending on the size (10 - 30 nm, 80 - 200 nm and 300 nm diameter) and concentration (0, 100, 500 and 1000 mg Zn/kg) of ZnO NPs and Zn ion (Zn2+) in bok choy, a leafy green vegetable crop. After 14 days of exposure, our results showed that large-sized ZnO NPs (i.e., 300 nm) at the highest concentration exhibited greater phytotoxicity, including obstruction of leaf and root weight (42.5 % and 33.8 %, respectively) and reduction of chlorophyll a and b content (50.2 % and 85.2 %, respectively), as well as changes in the activities of oxidative stress responses compared to those of small-sized ZnO NPs, although their translocation ability was relatively lower than that of smaller ones. The translocation factor (TF) values decreased as the size of ZnO NPs increased, with TF values of 0.68 for 10 - 30 nm, 0.55 for 80 - 200 nm, and 0.27 for 300 nm ZnO NPs, all at the highest exposure concentration. Both the results of micro X-ray fluorescence (µ-XRF) spectrometer and bio-transmission electron microscopy (bio-TEM) showed that the Zn elements were mainly localized at the edges of leaves exposed to small-sized ZnO NPs. However, the Zn elements upon exposure to large-sized ZnO NP were primarily observed in the primary veins of leaves in the µ-XRF data, indicating a limitation in their ability to translocate from roots to leaves. This study not only advances our comprehension of the environmental impact of nanotechnology but also holds considerable implications for the future of sustainable agriculture and food safety.


Asunto(s)
Bioacumulación , Brassica , Nanopartículas del Metal , Tamaño de la Partícula , Hojas de la Planta , Contaminantes del Suelo , Óxido de Zinc , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Contaminantes del Suelo/toxicidad , Brassica/efectos de los fármacos , Brassica/metabolismo , Brassica/crecimiento & desarrollo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Nanopartículas del Metal/toxicidad , Suelo/química , Clorofila/metabolismo , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Clorofila A/metabolismo , Nanopartículas/toxicidad
2.
Environ Sci Technol ; 58(21): 9250-9260, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38741559

RESUMEN

The potential of recycled iron phosphates (FePs), e.g., vivianites (Fe3(PO4)2·8H2O) and Fe(III)-rich phosphorus (P) adsorbent materials, as phosphorus fertilizer is limited by the strong interaction between Fe and P. In this study, the efficiency of FePs as P fertilizer was explored by applying them as granules or powder in flooded strongly P-fixing soils (acid and calcareous), thereby taking advantage of increased P release induced by reductive dissolution of P-bearing Fe(III) minerals. First, no P diffusion from granular FeP fertilizers into flooded soils was detectable by the diffusive gradient in thin films (DGT) technique and microfocused X-ray fluorescence (µ-XRF) analysis of thin soil sections, in contrast to detectable P diffusion away from granules of soluble triple superphosphate (TSP) fertilizer. On the contrary, powdered FePs demonstrated an excellent increase in extractable P (1 mM CaCl2) in a 120-day incubation experiment in flooded soils. Second, a pot experiment was performed with rice (Oryza sativa) grown in flooded acid and calcareous soils. The fertilizer value of FePs was remarkable when dosed as powder, as it was even up to 3-fold higher than TSP in the acid soil and similar to TSP in the calcareous soil. The beneficial effect of FeP over TSP in the acid soil is attributed to the slow release of P from FePs, which allows to partly overcome P fixation. The promising results of FePs as P fertilizer applied as powders in flooded soils debunk the generally accepted idea that FePs are poor sources of P while demonstrating the importance of the timing of FeP fertilizer application.


Asunto(s)
Fertilizantes , Oryza , Fosfatos , Fósforo , Suelo , Oryza/química , Fósforo/química , Fosfatos/química , Suelo/química , Reciclaje , Hierro/química , Agricultura
3.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564870

RESUMEN

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Asunto(s)
Sedum , Contaminantes del Suelo , Zinc/metabolismo , Cadmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte Iónico , Raíces de Plantas/metabolismo , Contaminantes del Suelo/análisis
4.
Biomed Phys Eng Express ; 10(3)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38604150

RESUMEN

We have previously reported the design of a portable109Cd x-ray fluorescence (XRF) system to measure iron levels in the skin of patients with either iron overload disease, such as thalassemia, or iron deficiency disease, such as anemia. In phantom studies, the system was found to have a detection limit of 1.35µg Fe per g of tissue for a dose of 1.1 mSv. However, the system must provide accurate as well as precise measurements of iron levels in the skin in order to be suitable for human studies. The accuracy of the system has been explored using several methods. First, the iron concentrations of ten pigskin samples were assessed using both the portable XRF system and ICP-MS, and the results were compared. Overall, it was found that XRF and ICP-MS reported average values for iron in skin that were comparable to within uncertainties. The mean difference between the two methodologies was not significant, 2.5 ± 4.6µg Fe per g. On this basis, the system could be considered accurate. However, ICP-MS measurements reported a wider range of values than XRF, with two individual samples having ICP-MS results that were significantly elevated (p < 0.05) compared to XRF. SynchrotronµXRF maps of iron levels in pigskin were acquired on the BioXAS beam line of the Canadian Light Source. TheµXRF maps indicated two important features in the distribution of iron in pigskin. First, there were small areas of high iron concentration in the pigskin samples, that were predominantly located in the dermis and hypodermis at depths greater than 0.5 mm. Monte Carlo modelling using the EGS 5 code determined that if these iron 'hot spots' were located towards the back of the skin at depths greater than 0.5 mm, they would not be observed by XRF, but would be measured by ICP-MS. These results support a hypothesis that iron levels in the two samples that reported significantly elevated ICP-MS results compared to XRF may have had small blood vessels at the back of the skin. Second, the synchrotronµXRF maps also showed a narrow (approximately 100µm thick) layer of elevated iron at the surface of the skin. Monte Carlo models determined that, as expected, the XRF system was most sensitive to these skin layers. However, the simulations found that the XRF system, when calibrated against homogenous water-based phantoms, was found to accurately measure average iron levels in the skin of normal pigs despite the greater sensitivity to the surface layer. The Monte Carlo results further indicated that with highly elevated skin surface iron levels, the XRF system would not provide a good estimate of average skin iron levels. The XRF estimate could, with correction factors, provide a good estimate of the iron levels in the surface layers of skin. There is limited data on iron distribution in skin, especially under conditions of disease. If iron levels are elevated at the skin surface by diseases including thalassemia and hemochromatosis, this XRF device may prove to be an accurate clinical tool. However, further data are required on skin iron distributions in healthy and iron overload disease before this system can be verified to provide accurate measurements.


Asunto(s)
Hierro , Piel , Espectrometría por Rayos X , Hierro/análisis , Piel/metabolismo , Animales , Porcinos , Espectrometría por Rayos X/métodos , Espectrometría por Rayos X/instrumentación , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Cadmio/análisis
5.
J Hazard Mater ; 469: 133903, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38430601

RESUMEN

Biochar, an environmentally friendly material, was found to passivate lead (Pb) in contaminated soil effectively. This study utilized spectroscopic investigations and partial least squares path modeling (PLS-PM) analysis to examine the impact of coconut-fiber biochar (CFB) on the translocation, accumulation, and detoxification mechanisms of Pb in soil-rice systems. The results demonstrated a significant decrease (p < 0.05) in bioavailable Pb concentration in paddy soils with CFB amendment, as well as reduced Pb concentrations in rice roots, shoots, and brown rice. Synchrotron-based micro X-ray fluorescence analyses revealed that CFB application inhibited the migration of Pb to the rhizospheric soil region, leading to reduced Pb uptake by rice roots. Additionally, the CFB treatment decreased Pb concentrations in the cellular protoplasm of both roots and shoots, and enhanced the activity of antioxidant enzymes in rice plants, improving their Pb stress tolerance. PLS-PM analyses quantified the effects of CFB on the accumulation and detoxification pathways of Pb in the soil-rice system. Understanding how biochar influences the immobilization and detoxification of Pb in soil-rice systems could provide valuable insights for strategically using biochar to address hazardous elements in complex agricultural settings.


Asunto(s)
Oryza , Contaminantes del Suelo , Oryza/metabolismo , Cocos , Plomo/análisis , Suelo/química , Contaminantes del Suelo/metabolismo , Carbón Orgánico/química , Cadmio/metabolismo
6.
Small Methods ; : e2301749, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38183412

RESUMEN

Li-air batteries attract significant attention due to their highest theoretical energy density among all existing energy storage technologies. Currently, challenges related to extending lifetime and long-term stability limit their practical application. To overcome these issues and enhance the total capacity of Li-air batteries, this study introduces an innovative approach with NiO/ZrO2 catalysts. Operando advanced chemical imaging with micrometer spatial resolution unveils that NiO/ZrO2 catalysts substantially change the kinetics of crystalline lithium hydroxide (LiOH) formation and facilitate its rapid decomposition with heterogeneous distribution. Moreover, ex situ combined neutron and X-ray computed tomography (CT) analysis, provide evidence of distinct lithium phases homogeneously distributed in the presence of NiO/ZrO2 . These findings underscore the material's superior physico-chemical and electronic properties, with more efficient oxygen diffusion and indications of lower obstruction to its active sites, avoiding clogging in the active electrode, a common cause of capacity loss. Electrochemical tests conducted at high current density demonstrated a significant kinetic enhancement of the oxygen reduction and evolution reactions, resulting in improved charge and discharge processes with low overpotential. This pioneering approach using NiO/ZrO2 catalysts represents a step toward on developing the full potential of Li-air batteries as high-energy-density energy storage systems.

7.
Talanta ; 269: 125407, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988824

RESUMEN

The preparation and characterization of Al-Zn-Mg-Cu alloys with varying chemical compositions are helpful for rapid screening of the optimal compositions in the research and development of new materials. The traditional testing methods cannot accurately determine the composition gradient in samples because they have a low spatial resolution or are semi-quantitative and time-consuming. The micro X-ray fluorescence (µ-XRF) methodology has been used for the elemental imaging of Al-Zn-Mg-Cu alloys with varying chemical compositions. The experimental conditions, including testing voltages, testing currents and the dwell time for each pixel, were optimized systematically to improve the repeatability and accuracy of the µ-XRF methodology. The quantitative elemental imaging of an Al-Zn-Mg-Cu alloy rod sample using µ-XRF was performed, and the results were validated by conducting spark optical emission spectroscopy. The limits of detection of µ-XRF for Zn, Mg, and Cu were 0.007 wt%, 0.068 wt%, and 0.002 wt%, respectively. This versatile elemental imaging technique provided an effective means for the component analysis and process evaluation of alloy samples with a composition gradient and thus for research and development of new materials.

8.
Aquat Toxicol ; 264: 106731, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890272

RESUMEN

Pollution by potentially toxic trace metals, such as copper or zinc, is global. Both Cu and Zn are essential microelements, which in higher concentrations become toxic. The aquatic plant Pistia stratiotes(L. has great potential for phytoremediation. Also, it has an unusually large and easily detachable root cap, which makes it a suitable model for studying the potential role of the root cap in metal uptake. Plant response to environmentally relevant concentrations of Cu (0.1, 0.3, and 1 µM) and Zn (0.3, 1, and 3 µM) was investigated with the aim of studying their interaction and distribution at the root tissue level as well as revealing their tolerance mechanisms. Changes in the root anatomy and plant ionome were determined using light and fluorescence microscopy, ICP-MS, and µXRF imaging. Alterations in photosynthetic activity caused by Cu or Zn excesses were monitored by direct imaging of fast chlorophyll fluorescence kinetics (OJIP). Fe and Mn were preferentially localized in the root cap, while Ca, Cu, Ni, and Zn were mainly in the root tip regardless of the Cu/Zn treatment. Translocation of Cu and Zn to the leaves increased with higher doses, however the translocation factor was the lowest in the highest treatments. Measurements of photosynthetic parameters showed a higher susceptibility of electron transport flux from QA to QB under increasing Cu than Zn supply. This, along with our findings regarding the root anatomy and the differences in Ca accumulation and distribution, led to the conclusion that P. stratiotes is more effective for Zn remediation than Cu.


Asunto(s)
Araceae , Metales Pesados , Contaminantes Químicos del Agua , Zinc , Cobre , Contaminantes Químicos del Agua/toxicidad , Raíces de Plantas
9.
MethodsX ; 11: 102390, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37817980

RESUMEN

In this contribution we present a method for pre-screening geological materials for zircon prior to submitting samples for heavy mineral separation. The proposed workflow utilizes micro X-ray fluorescence to identify zirconium-bearing pixels in slabbed rock samples. The open-source image analysis software ImageJ™ is applied to the micro X-ray fluorescence elemental map to determine the abundance and spatial distribution of zirconium-bearing pixels in the scanned surface area. This method allows for the prediction of zircon abundance and estimation of grain size within a sample which can be used to prioritize samples for geochronology as well as inform crushing and grinding metrics for heavy mineral separation. This information can ultimately lead to improved recovery of zircon and other mineral geochronometers for geochronological studies. Advantages of the proposed workflow include:•Minimal sample preparation and rapid results;•Analytical method is non-destructive; and•In-situ grain size estimation and abundance predictions prior to initiating time-consuming and costly heavy mineral separation methods.

10.
Sci Total Environ ; 893: 164866, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37329906

RESUMEN

With the anticipated application of engineered nanomaterials (ENMs) as foliar fertilizers in agriculture, there is a particular need to accurately assess crop intensification capacity, potential hazards, and effects on the soil environment when ENMs are applied alone or in combination. In this study, the joint analysis of scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) showed that ZnO NPs transformed on the leaf surface or within the leaf, and Fe3O4 NPs were able to translocate from the leaf (~ 25 memu/g) into the stem (~ 4 memu/g), but were unable to enter the grain (below 1 memu/g), guaranteeing food safety. Spray application of ZnO NPs significantly improved grain Zn content of wheat (40.34 mg/kg), whereas Fe3O4 NPs treatment and Zn + Fe NPs treatment did not significantly improve grain Fe content. According to the micro X-ray fluorescence of wheat grains(µ- XRF) and physiological structure in situ analysis showed that ZnO NPs treatment and Fe3O4 NPs treatment could increase the elemental contents of Zn and Fe in the crease tissue and endosperm components, respectively, while antagonism was observed in the grain treated with Zn + Fe NPs. The 16S rRNA gene sequencing results showed that the Fe3O4 NPs treatment had the greatest negative effect on soil bacterial community, followed by Zn + Fe NPs, and ZnO NPs showed some promotion effect. This may be caused by the significantly higher elemental contents of Zn/Fe in the treated roots and soils. This study critically evaluates the application potential and environmental risks of nanomaterials as foliar fertilizers and is instructive for agricultural applications of nanomaterials alone and in combination.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Óxido de Zinc , Óxido de Zinc/análisis , Suelo , Triticum , Fertilizantes/análisis , ARN Ribosómico 16S , Nutrientes/análisis , Grano Comestible/química , Inocuidad de los Alimentos , Contaminantes del Suelo/análisis
11.
Phys Med Biol ; 68(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37167981

RESUMEN

Objective. Circulating tumor cells (CTCs) carry crucial information related to the spreading and proliferation of tumors, especially at early stages of the disease. Despite the huge clinical potential held by CTCs in cancer therapy, capture and detection of these cells from the patient's peripheral blood system is rather challenging since CTCs are extremely rare cells. The objective of this paper is, based on Monte Carlo simulations, to propose the detection of immunomagnetically labelled tumor cells by micro-x-ray fluorescence (µ-XRF).Approach. The simulations were carried out with the Monte Carlo N-Particle, version 6.2, (MCNP6.2) code. The model simulates 20µm cancer cell lines and 10µm CTCs tagged with Fe3O4@SiO2spherical nanoparticles of diameters 25 nm, 60 nm and 110 nm. A 17.5 keV monochromatic, micro-focused x-ray beam of diameter 15µm, impinges on cancer cells immersed in a phosphate-buffered saline solution. The simulations also include a polymeric sample holder and a silicon drift detector with a beryllium window and silver collimator.Main results. The results show the dependence of the signal intensity (Fe Kαline) on cell and nanoparticle sizes. Samples containing two and three CTCs were also simulated in particular geometrical configurations. It is presented how the inter-cell distances and cell positions relative to the incident x-ray beam affect the signal. In addition, within the parameters used in the simulations,µ-XRF method provides a minimum detection limit of 9.4 pg of Fe, which corresponds to detecting a single 10µm CTC labeled with 110 nm Fe3O4@SiO2nanoparticles at 6.3% binding.Significance. Theµ-XRF based method proposed in this paper for detecting CTCs, combined with immunomagnetic nanoparticles (NPs), has the potential to be innovative in the field of liquid biopsy.


Asunto(s)
Nanopartículas del Metal , Neoplasias , Humanos , Rayos X , Método de Montecarlo , Radiografía , Simulación por Computador
12.
Anthropocene Rev ; 10(1): 146-176, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37255737

RESUMEN

An annually laminated succession in Crawford Lake, Ontario, Canada is proposed for the Global boundary Stratotype Section and Point (GSSP) to define the Anthropocene as a series/epoch with a base dated at 1950 CE. Varve couplets of organic matter capped by calcite precipitated each summer in alkaline surface waters reflect environmental change at global to local scales. Spheroidal carbonaceous particles and nitrogen isotopes record an increase in fossil fuel combustion in the early 1950s, coinciding with early fallout from nuclear and thermonuclear testing - 239+240Pu and 14C:12C, the latter more than compensating for the effects of old carbon in this dolomitic basin. Rapid industrial expansion in the North American Great Lakes region led to enhanced leaching of terrigenous elements by acid precipitation during the Great Acceleration, and calcite precipitation was reduced, producing thin calcite laminae around the GSSP that is marked by a sharp decline in elm pollen (Dutch Elm disease). The lack of bioturbation in well-oxygenated bottom waters, supported by the absence of fossil pigments from obligately anaerobic purple sulfur bacteria, is attributed to elevated salinities and high alkalinity below the chemocline. This aerobic depositional environment, highly unusual in a meromictic lake, inhibits the mobilization of Pu, the proposed primary stratigraphic guide for the Anthropocene.

13.
Angew Chem Int Ed Engl ; 62(22): e202217196, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36876900

RESUMEN

Heterogeneous light-driven catalysis is a cornerstone of sustainable energy conversion. Most catalytic studies focus on bulk analyses of the hydrogen and oxygen evolved, which impede the correlation of matrix heterogeneities, molecular features, and bulk reactivity. Here, we report studies of a heterogenized catalyst/photosensitizer system using a polyoxometalate water oxidation catalyst and a model, molecular photosensitizer that were co-immobilized within a nanoporous block copolymer membrane. Via operando scanning electrochemical microscopy (SECM), light-induced oxygen evolution was determined using sodium peroxodisulfate (Na2 S2 O8 ) as sacrificial electron acceptor. Ex situ element analyses provided spatially resolved information on the local concentration and distribution of the molecular components. Infrared attenuated total reflection (IR-ATR) studies of the modified membranes showed no degradation of the water oxidation catalyst under the reported light-driven conditions.

14.
J Synchrotron Radiat ; 30(Pt 2): 407-416, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891854

RESUMEN

Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Z elements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg-1 in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.


Asunto(s)
Arsénico , Oryza , Humanos , Rayos X , Sincrotrones , Arsénico/análisis , Radiografía
15.
Ecotoxicol Environ Saf ; 255: 114744, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36931086

RESUMEN

Heavy metal contamination of soils has been a global environmental issue over the past decades, threatening food security and human health. Understanding the migration and transformation of heavy metals in soils is critical for restoring an impaired environment and developing sustainable agriculture, particularly in the face of global warming. However, little effort has been devoted to investigating the impact of elevated temperatures on the migration and distribution of exogenous heavy metals in soils. This study experimented with a 180-day incubation at 15 °C, 30 °C, and 45 °C with an arable soil (Alfisol) of Huang-Huai-Hai River Basin, China, which was initially spiked with copper (Cu). A comparison of the results revealed that the percentage of soil water-soluble Cu doubled at 45 °C compared with 15 °C. The percentage of protein-like substances in dissolved organic matter (DOM) was the highest at 45 °C, suggesting that proteinaceous components play a more significant role in controlling the dissolution of Cu into DOM. Moreover, by sequential extraction and micro-X-ray fluorescence (µ-XRF), Cu was facilitatively transformed from exchangeable, and specifically adsorbed fractions, to iron (Fe)/manganese (Mn) oxides bound species by 7.75%23.63% with the elevation of temperature from 15 °C to 45 °C. The conversion of Cu speciation is attributed to the significant release of organic carbon from Fe/Mn oxides, especially the Mn oxide components, which are available for Cu binding. The findings of this work will provide an in-depth understanding of the fate of Cu in soils, which is fundamental for the risk assessment and remediation of Cu-polluted soils in the Huang-Huai-Hai River Basin under the context of global warming.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Cobre/metabolismo , Suelo/química , Temperatura , Metales Pesados/análisis , Óxidos , Contaminantes del Suelo/análisis
16.
Forensic Sci Int ; 343: 111550, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36623406

RESUMEN

In this study, glass from 30 different portable electronic devices (PED) screens, 15 screen protectors (SP), and 3 brands of liquid glass (LG) were analyzed using a µ-XRF instrument equipped with two silicon drift detectors (SDD). Additional analysis of six fragments, all originating from the same PED and SP screen, assessed the elemental homogeneity within a single glass source. Examinations of the 30 PEDs and the majority of the SP screens revealed spectra with low sodium and high potassium, which is likely due to the ion exchange process at the surface during the glass manufacturing process. The absence of calcium in the XRF spectra was also characteristic of PED formulations. Initial spectral overlay examinations classified the PED and SP samples into major groups based on their distinctive elemental profiles (5 PED groups, 4 SP groups). Further discrimination of within-group samples was possible when considering reproducible differences in signal intensities (discrimination 98.4 % PED, 98.1 % SP). Additionally, a 3 s (3 % Relative Standard Deviation, RSD) comparison criterion produced the lowest false exclusion rates among same-source fragments (3.3 % PED, 0.8 % SP) while maintaining a high discrimination power among different-source fragments (98.4 % PED, 100 % SP). Same source PED and SP samples resulted in low variability within most elements examined (< 8 % RSD), except for potassium. An experimental threshold established from the quantitative metric of spectral similarity, spectral contrast angle (SCA) ratio of same-source and different-source datasets, produced false exclusion and false inclusion rates of 4 % or 0.95 % for PED and SP fragments, respectively. Spectra of just the liquid glass residues indicated some major elements present but the effect of these elements in PED fragments treated with liquid glass was not significant. This study provides a preliminary understanding of the elemental composition of modern PED glasses and their accessories and the discrimination capability of µ-XRF for forensic comparisons.

17.
J Hazard Mater ; 442: 130062, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36183514

RESUMEN

Soybean (Glycine max (L.) Merr.) plants were exposed to various Cd concentrations from background and low non-toxic (0.5-50 nM) via sublethally toxic (< 550 nM) to highly, ultimately lethally toxic (3 µM) concentrations. Plants were cultivated hydroponically for 10 weeks until pod development stage of the control plants. The threshold and mechanism of sublethal Cd toxicity was investigated by metabolomics and metalloproteomics (HPLC-ICP-MS) measuring metal binding to proteins in the harvested roots. Spatial distribution of Cd was revealed by µXRF-CT. Specific binding of Cd to proteins already at 50 nM Cd revealed the likely high-affinity protein binding targets in roots, identified by protein purification from natural abundance. This revealed allantoinase, aquaporins, peroxidases and protein disulfide isomerase as the most likely high-affinity targets of Cd binding. Cd was deposited in cortex cell vacuoles at sublethal and bound to the cell walls of the outer cortex and the vascular bundle at lethal Cd. Cd binding to proteins likely inhibits them, and possibly induces detoxification mechanisms, as verified by metabolomics: allantoic acid and allantoate increased due to sublethal Cd toxicity. Changes of the Cd binding pattern indicated a detoxification strategy at lower Cd, but saturated binding sites at higher Cd concentrations.


Asunto(s)
Cadmio , Glycine max , Glycine max/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Raíces de Plantas/metabolismo , Metaboloma , Peroxidasas/metabolismo
18.
Environ Sci Technol ; 56(22): 15718-15727, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36239028

RESUMEN

Methods promoting lead (Pb) phase transformation in soils are essential for decreasing Pb bioaccessibility/bioavailability and may offer an in situ, cost-efficient process for mitigating contaminant exposure. Recent plumbojarosite (PLJ) conversion methods have shown the greatest potential to reduce soil Pb bioaccessibility, an in vitro bioaccessibility assay measurement of the proportion of Pb solubilized under gastric chemical conditions. Soils tested utilizing the recent PLJ method were found to have a Pb bioaccessibility of <1%, compared to original soils possessing bioaccessibility of >70%. However, this technique requires heat (95-100 °C) to promote mineral transformation. Jarosite-group minerals may incorporate multiple interlayer cations; therefore, we probed the potential for jarosite to remediate Pb via intercalation by reacting presynthesized potassium (K)-jarosite with aqueous Pb and/or Pb-contaminated soil at room temperature. Both K-jarosite and heated PLJ-treated samples were investigated by pairing bioaccessibility analyses with advanced bulk and spatially resolved X-ray absorption spectroscopy analyses. Samples treated with K-jarosite promoted Pb transformation to low-bioaccessibility (<10%) PLJ, with soil being converted to 100% PLJ using both heated and nonheated techniques. µ-X-ray fluorescence (µ-XRF) and µ-X-ray absorption near-edge structure (µ-XANES) showcase significant differences between elemental interactions for heated and nonheated PLJ-treated samples with anglesite impurities being found on the microscale. Although further development is necessary to accommodate for suitable field conditions, results indicate, for the first time, that K-jarosite may successfully convert soil Pb to PLJ without high-temperature conditions. The newfound utility of K-jarosite is expected to be key to future jarosite-based soil Pb remediation method development.


Asunto(s)
Contaminantes del Suelo , Contaminantes del Suelo/química , Plomo/análisis , Potasio/análisis , Temperatura , Suelo/química , Disponibilidad Biológica , Minerales/química
19.
Environ Monit Assess ; 194(Suppl 2): 772, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36255510

RESUMEN

Dam construction across the main flow of an estuary can greatly contribute to a high accumulation of inorganic contaminants. However, it remains unknown to what extend externally available heavy metals are incorporated into biota living in those contaminated environments. In this study, the heavy metal copper was investigated both in the sediment and in the tissues of nematodes taken from the subtidal zone in the Ba Lai estuary where a dam is present, and compared with samples from the dam-free Ham Luong estuary, both part of the Mekong Delta. Samples were taken in the dry season of 2017 in four stations in the Ba Lai estuary with two stations in the downstream part from the dam and two upstream. Similar locations with respect to the distance were sampled in the dam-free estuary. The internal copper concentration in nematodes was measured by applying micro X-ray fluorescence. The results showed that both internal and sediment copper concentrations were different between the two estuaries and among estuarine sections. The highest copper concentration in nematodes was found in the upstream section of Ba Lai estuary where the greatest accumulation of sedimentary copper was observed, while the dammed downstream part was lowest in internal copper accumulation. Moreover, there was more variation in the copper levels between the two sections within the dammed estuary compared to those in Ham Luong. These observations might point to the contribution of the Ba Lai dam to the increase of copper contaminants in the benthic environment leading to accumulation in nematodes.


Asunto(s)
Metales Pesados , Nematodos , Contaminantes Químicos del Agua , Animales , Estuarios , Cobre , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Sedimentos Geológicos
20.
Environ Pollut ; 309: 119773, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841986

RESUMEN

In this work, arsenic (As) accumulation and distribution over time in Pteris vittata young fronds from adult plants and in whole plantlets, grown on a highly contaminated As-soil, was determined by µ-XRF. A linear increase in As content up to 60 days was found in young fronds at different times, and a progressive distribution from the apex to the base of the fronds was observed. In whole plantlets, As signal was detectable from 9 to 20 days in the apex of a few fronds and fiddleheads. Later, up to 60 days, As was localized in all fronds, in the rhizome and in basal part of the roots. The dynamics of expression of As-related genes revealed a good correlation between As content and the level of the As (III)-antiporter PvACR3 transcript in plantlets roots and fronds and in young fronds. Moreover, the transcription of As (V)-related gametophytic genes PvGAPC1, PvOCT4 increases over time during As accumulation while PvGSTF1 is expressed only in roots. Here, we demonstrate the suitability of the µ-XRF technique to monitor As accumulation, which allowed us to propose that As is initially directly transported to fiddleheads and apex of fronds, is later distributed to the whole fronds and simultaneously accumulated in the rhizome and roots. We also provide indications on the expression of candidate genes possibly involved in As (hyper)accumulation.


Asunto(s)
Arsénico , Pteris , Contaminantes del Suelo , Arsénico/análisis , Biodegradación Ambiental , Expresión Génica , Raíces de Plantas/metabolismo , Pteris/genética , Pteris/metabolismo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA