Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83.327
Filtrar
1.
Mol Genet Metab Rep ; 40: 101104, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38983107

RESUMEN

Several disorders of energy metabolism have been treated with exogenous ketone bodies. The benefit of this treatment is best documented in multiple acyl-CoA dehydrogenase deficiency (MADD) (MIM#231680). One might also expect ketone bodies to help in other disorders with impaired ketogenesis or in conditions that profit from a ketogenic diet. Here, we report the use of a novel preparation of dextro-ß-hydroxybutyrate (D-ßHB) salts in two cases of MADD and one case of pyruvate dehydrogenase (PDH) deficiency (MIM#312170). The two patients with MADD had previously been on a racemic mixture of D- and L­sodium hydroxybutyrate. Patient #1 found D-ßHB more palatable, and the change in formulation corrected hypernatraemia in patient #2. The patient with PDH deficiency was on a ketogenic diet but had not previously been given hydroxybutyrate. In this case, the addition of D-ßHB improved ketosis. We conclude that NHS101 is a good candidate for further clinical studies in this group of diseases of inborn errors of metabolism.

2.
Front Pharmacol ; 15: 1422369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983911

RESUMEN

Multiple studies indicate that iron chelators enhance their anti-cancer properties by inducing NDRG1, a known tumor and metastasis suppressor. However, the exact role of NDRG1 remains controversial, as newer studies have shown that NDRG1 can also act as an oncogene. Our group recently introduced mitochondrially targeted iron chelators deferoxamine (mitoDFO) and deferasirox (mitoDFX) as effective anti-cancer agents. In this study, we evaluated the ability of these modified chelators to induce NDRG1 and the role of NDRG1 in breast cancer. We demonstrated that both compounds specifically increase NDRG1 without inducing other NDRG family members. We have documented that the effect of mitochondrially targeted chelators is at least partially mediated by GSK3α/ß, leading to phosphorylation of NDRG1 at Thr346 and to a lesser extent on Ser330. Loss of NDRG1 increases cell death induced by mitoDFX. Notably, MDA-MB-231 cells lacking NDRG1 exhibit reduced extracellular acidification rate and grow slower than parental cells, while the opposite is true for ER+ MCF7 cells. Moreover, overexpression of full-length NDRG1 and the N-terminally truncated isoform (59112) significantly reduced sensitivity towards mitoDFX in ER+ cells. Furthermore, cells overexpressing full-length NDRG1 exhibited a significantly accelerated tumor formation, while its N-terminally truncated isoforms showed significantly impaired capacity to form tumors. Thus, overexpression of full-length NDRG1 promotes tumor growth in highly aggressive triple-negative breast cancer.

3.
Front Pharmacol ; 15: 1418465, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983917

RESUMEN

Background: ß-blockers have been widely used in patients with extensive cardiovascular disease (CVD) and have provided benefits. However, they are more likely to cause symptomatic bradycardia, hypotension, or glucose metabolism disorders, which may lead to an increased risk of atrial fibrillation (AF), but evidence is lacking. Aims: This study was to analyze the association between the use of ß-blockers and the risk of developing AF. Methods: This nationwide, prospective cohort study utilized data from the 2013-2020 National Health and Nutrition Examination Survey (NHANES). The patients were stratified into a ß-blocker treatment group (n = 2585) and a non-ß-blocker treatment group (n = 8525). Univariate and multivariate logistic regression analyses were performed to identify the relationship between ß-blockades and the risk of AF. Propensity matching analysis was used to balance patient baseline characteristics and to control for confounders. Results: A total of 11,110 subjects were included in this study (mean [SD] age, 59.89 [15.07] years; 5657 [49.7%] males). A total of 111/2585 subjects developed AF in the ß-blocker treatment group, and 75/8525 developed AF in the non-ß-blocker treatment group (incidence rate, 4.2% vs. 0.8%). Compared with the non-ß-blocker group, the ß-blocker group had an increased risk of incident AF (aOR, 2.339; 95% CI, 1.614-3.410). Some sensitivity analyses also revealed consistent findings of increased AF risk associated with ß-blocker treatment. Conclusion: The findings from this study suggest that ß-blocker treatment is associated with an increased risk of incident AF and may help physicians select a modest medication for patients while also assessing the risk of AF.

4.
Aging Cell ; : e14260, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994634

RESUMEN

Amyloid plaques, a major pathological hallmark of Alzheimer's disease (AD), are caused by an imbalance between the amyloidogenic and non-amyloidogenic pathways of amyloid precursor protein (APP). BACE1 cleavage of APP is the rate-limiting step for amyloid-ß production and plaque formation in AD. Although the alteration of BACE1 expression in AD has been investigated, the underlying mechanisms remain unknown. In this study, we determined MEIS2 was notably elevated in AD models and AD patients. Alterations in the expression of MEIS2 can modulate the levels of BACE1. MEIS2 downregulation improved the learning and memory retention of AD mice and decreased the number of amyloid plaques. MEIS2 binds to the BACE1 promoter, positively regulates BACE1 expression, and accelerates APP amyloid degradation in vitro. Therefore, our findings suggest that MEIS2 might be a critical transcription factor in AD, since it regulates BACE1 expression and accelerates BACE1-mediated APP amyloidogenic cleavage. MEIS2 is a promising early intervention target for AD treatment.

5.
J Transl Med ; 22(1): 653, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004699

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) patients with EGFR mutations exhibit an unfavorable response to immune checkpoint inhibitor (ICI) monotherapy, and their tumor microenvironment (TME) is usually immunosuppressed. TGF-ß plays an important role in immunosuppression; however, the effects of TGF-ß on the TME and the efficacy of anti-PD-1 immunotherapy against EGFR-mutated tumors remain unclear. METHODS: Corresponding in vitro studies used the TCGA database, clinical specimens, and self-constructed mouse cell lines with EGFR mutations. We utilized C57BL/6N and humanized M-NSG mouse models bearing EGFR-mutated NSCLC to investigate the effects of TGF-ß on the TME and the combined efficacy of TGF-ß blockade and anti-PD-1 therapy. The changes in immune cells were monitored by flow cytometry. The correlation between TGF-ß and immunotherapy outcomes of EGFR-mutated NSCLC was verified by clinical samples. RESULTS: We identified that TGF-ß was upregulated in EGFR-mutated NSCLC by EGFR activation and subsequent ERK1/2-p90RSK phosphorylation. TGF-ß directly inhibited CD8+ T cell infiltration, proliferation, and cytotoxicity both in vitro and in vivo, but blocking TGF-ß did not suppress the growth of EGFR-mutated tumors in vivo. Anti-TGF-ß antibody combined with anti-PD-1 antibody significantly inhibited the proliferation of recombinant EGFR-mutated tumors in C57BL/6N mice, which was superior to their monotherapy. Mechanistically, the combination of anti-TGF-ß and anti-PD-1 antibodies significantly increased the infiltration of CD8+ T cells and enhanced the anti-tumor function of CD8+ T cells. Moreover, we found that the expression of TGF-ß1 in EGFR-TKI resistant cell lines was significantly higher than that in parental cell lines. The combination of anti-TGF-ß and nivolumab significantly inhibited the proliferation of EGFR-TKI resistant tumors in humanized M-NSG mice and prolonged their survival. CONCLUSIONS: Our results reveal that TGF-ß expression is upregulated in NSCLC with EGFR mutations through the EGFR-ERK1/2-p90RSK signaling pathway. High TGF-ß expression inhibits the infiltration and anti-tumor function of CD8+ T cells, contributing to the "cold" TME of EGFR-mutated tumors. Blocking TGF-ß can reshape the TME and enhance the therapeutic efficacy of anti-PD-1 in EGFR-mutated tumors, which provides a potential combination immunotherapy strategy for advanced NSCLC patients with EGFR mutations.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Mutación , Receptor de Muerte Celular Programada 1 , Factor de Crecimiento Transformador beta , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Receptores ErbB/metabolismo , Animales , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Linfocitos T CD8-positivos/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Mutación/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ratones Endogámicos C57BL , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Femenino , Masculino
6.
J Infect Dev Ctries ; 18(6): 950-956, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991001

RESUMEN

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the world. We aimed to investigate the associations between toll-like receptors 2 and 4 (TLR-2 and TLR-4) and ß-lactam antibiotics in COPD patients complicated with pulmonary infections. METHODOLOGY: A total of 156 COPD patients complicated with pulmonary infections were included. Their blood gas, airway resistance, health status, expression levels of TLR-2 and TLR-4, and pulmonary function were analyzed after treatment with ß-lactam antibiotics. RESULTS: Blood gas indices oxygen saturation, partial pressure of oxygen, and partial pressure of carbon dioxide at one day before treatment, on the fifteenth day of treatment, and on the first day after the end of treatment showed significant differences (p < 0.01). Significant differences were also detected in airway resistance indices (p < 0.01). The differences in the mRNA expression levels of TLR-2 and TLR-4 were significant (p < 0.05). Downward trends were observed in the clinical pulmonary infection score and acute physiology and chronic health evaluation II score, which indicated alleviation of the disease. Pulmonary function indices recorded vital capacity (VC)/predicted VC (%), recorded forced vital capacity at 1 s (FEV1)/predicted FEV1 (%), and residual volume/total lung capacity were significantly different (p < 0.05). CONCLUSIONS: ß-Lactam antibiotics had obvious therapeutic effects on COPD patients complicated with pulmonary infections, probably by suppressing or attenuating TLR-2- and TLR-4-mediated inflammatory responses. It is necessary to comprehensively evaluate and choose appropriate antibiotics, aiming for maximum relief of the pain to help patients recover quickly.


Asunto(s)
Antibacterianos , Enfermedad Pulmonar Obstructiva Crónica , Receptor Toll-Like 2 , Receptor Toll-Like 4 , beta-Lactamas , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Masculino , Receptor Toll-Like 2/genética , Femenino , Anciano , Antibacterianos/uso terapéutico , beta-Lactamas/uso terapéutico , Persona de Mediana Edad , Receptor Toll-Like 4/genética , Pruebas de Función Respiratoria , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Anciano de 80 o más Años , Análisis de los Gases de la Sangre , Antibióticos Betalactámicos
7.
J Infect Dev Ctries ; 18(6): 943-949, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38991000

RESUMEN

INTRODUCTION: Our goal was to investigate the antimicrobial resistance due to beta-lactamase genes and virulent determinants (biofilm-forming ability) expressed by Acinetobacter collected from health settings in Pakistan. A cross-sectional study was conducted for the molecular characterization of carbapenemases and biofilm-producing strains of Acinetobacter spp. METHODOLOGY: Two twenty-three imipenem-resistant Acinetobacter isolates were analyzed from 2020 to 2023.The combination disk test and modified hodge test were performed. Biofilm forming ability was determined by polystyrene tube assay. Multiplex polymerase chain reaction (PCR) for virulent and biofilm-forming genes, and 16S rRNA sequencing were performed. RESULTS: 118 (52.9%) carbapenem-resistant Acinetobacter (CR-AB) were isolated from wounds and pus, 121 (54.2%) from males, and 92 (41.2%) from 26-50-years-olds. More than 80% of strains produced ß-lactamases and carbapenemases. Based on the PCR amplification of the ITS gene, 174 (78.0%) CR-AB strains were identified from CR-Acinetobacter non-baumannii (ANB). Most CR-AB were strong and moderate biofilm producers. Genetic analysis revealed the blaOXA-23, blaTEM, blaCTX-M blaNDM-1 and blaVIM were prevalent in CR-AB with frequencies 91 (94.8%), 68 (70.8%), 19 (19.7%), 53 (55.2%), 2 (2.0%) respectively. Among virulence genes, OmpA was dominant in CR-AB isolates from wound (83, 86.4%), csuE 63 (80.7%) from non-wound specimens and significantly correlated with blaNDM and blaOXA genes. Phylogenetic analysis revealed three different clades for strains based on specimens. CONCLUSIONS: CR-AB was highly prevalent in Pakistan and associated with wound infections. The genes, blaOXA-23, blaTEM, blaCTX-M, and blaNDM-1 were detected in CR-AB. Most CR-AB were strong biofilm producers with virulent genes OmpA and csuE.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biopelículas , Carbapenémicos , beta-Lactamasas , Biopelículas/crecimiento & desarrollo , beta-Lactamasas/genética , Humanos , Pakistán , Acinetobacter baumannii/genética , Acinetobacter baumannii/efectos de los fármacos , Masculino , Estudios Transversales , Adulto , Persona de Mediana Edad , Femenino , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Carbapenémicos/farmacología , Pruebas de Sensibilidad Microbiana , Adulto Joven , Proteínas Bacterianas/genética , Adolescente
8.
Mol Carcinog ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980215

RESUMEN

γ-Tocotrienol (γ-T3) is a major subtype of vitamin E, mainly extracted from palm trees, barley, walnuts, and other plants. γ-T3 has effects on anti-inflammation, anti-oxidation, and potential chemoprevention against malignancies. It is still uncompleted to understand the effect of γ-T3 on the inhibitory mechanism of cancer. This study aimed to investigate whether γ-T3 enhanced autophagy in gastric cancer and the underlying molecular mechanism. The results showed that γ-T3 (0-90 µmol/L) inhibited the proliferation of gastric cancer MKN45 cells and AGS cells, and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Autophagy was increased in MKN45 cells treated with γ-T3 (0-45 µmol/L), especially at a dose of 30 µmol/L for 24 h. These effects were reversed by 3-methyladenine pretreatment. Furthermore, γ-T3 (30 µmol/L) also significantly downregulated the expression of pGSK-3ß (ser9) and ß-catenin protein in MKN45 cells, and γ-T3 (20 mg/kg b.w.) effectively decreased the growth of MKN45 cell xenografts in BABL/c mice. GSK-3ß inhibitor-CHIR-99021 reversed the negative regulation of GSK-3ß/ß-Catenin signaling and autophagy. Our findings indicated that γ-T3 enhances autophagy in gastric cancer cells mediated by GSK-3ß/ß-Catenin signaling, which provides new insights into the role of γ-T3 enhancing autophagy in gastric cancer.

9.
Proteins ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980225

RESUMEN

Understanding the sequence-structure relationship in protein is of fundamental interest, but has practical applications such as the rational design of peptides and proteins. This relationship in the Type I left-handed ß-helix containing proteins is updated and revisited in this study. Analyzing the available experimental structures in the Protein Data Bank, we could describe, further in detail, the structural features that are important for the stability of this fold, as well as its nucleation and termination. This study is meant to complete previous work, as it provides a separate analysis of the N-terminal and C-terminal rungs of the helix. Particular sequence motifs of these rungs are described along with the structural element they form.

10.
Nanotechnology ; 35(39)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955171

RESUMEN

The current work emphasizes the preparation of trimetallic core-shell Ag-TeO2@ZnO nanocomposites (NCs) by thermo-mechanical method for the efficient photocatalytic degradation of 2,4-Dichlorophenol and ß-naphthol pollutants. FE-SEM shows that Ag and TeO2nanoparticles are deposited on the surface of ZnO nanotubes. The band gap of pristine ZnO NPs and 5 wt% Ag-TeO2@ZnO nanocomposites are found to be 3.16 and 2.96 eV, respectively. The calculated specific surface area (SBET) of pristine ZnO NPs and 5 wt% Ag-TeO2@ZnO nanocomposites are 40.47 and 45.66 m2g-1respectively, confirming that Ag and TeO2nanoparticles contribute to increasing in surface area of pure ZnO. The synthesised nanocomposite showed excellent photocatalytic performance for the degradation of ß -naphthol (95.6%) in 40 min at the concentration of (0.6 mg ml-1) and 2,4-DCP (99.6%) in 180 min (0.4 mg ml-1) under natural sunlight. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were carried out to study the electrochemical properties. The determination of reactive oxygen species (ROS) confirmed that the degradation of the pollutants by 5 wt% Ag-TeO2@ZnO NCs was due to the formation of superoxide radicals. Electron paramagnetic resonance revealed the presence of sharp signals in pure ZnO nanoparticles at g ∼1.95 and oxygen vacancy peak at g ∼2.01 in 5 wt% Ag-TeO2@ZnO NCs. To study the mechanism behind the degradation of pollutants, Scavenger test using histidine and ascorbic acid (ROS scavengers) was performed. The synthesised nanocomposites are highly stable and showed enhanced efficiency up to three cycles, confirming their reusability as a photocatalyst.

11.
Fish Shellfish Immunol ; : 109740, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960104

RESUMEN

ß-glucans are carbohydrates present in the cell wall of many fungi, which are often used as immunostimulants in feeds for farmed species. Their capacity to activate innate immune responses directly acting on innate cell populations has been widely documented in fish. However, whether they can affect the functionality of adaptive immune cells has been scarcely explored. In this context, in the current work, we have determined the effects of ß-glucans on rainbow trout blood IgM+ B cells in the presence or absence of 2,4,6-trinitrophenyl hapten conjugated to lipopolysaccharide (TNP-LPS), a model antigen. For this, rainbow trout peripheral blood leukocytes were incubated with different doses of ß-glucans or media alone in the presence or absence of TNP-LPS for 48 h. The size, levels of expression of surface MHC II, antigen processing and phagocytic capacities and proliferation of IgM+ B cells were then studied by flow cytometry. The number of IgM-secreting cells in the cultures was also estimated by ELISpot. ß-glucans significantly decreased the levels of surface MHC II expression and the antigen processing capacities of these cells, especially in the presence of TNP-LPS, while they increased their phagocytic activity. On their own, ß-glucans slightly activated the proliferation of IgM+ B cells but reduced that induced by TNP-LPS. In contrast, ß-glucans significantly increased the number of cells secreting IgM in the cultures. This effect of ß-glucans on the IgM-secreting capacity of B cells was also confirmed through a feeding experiment, in which the IgM-secreting capacity of blood leukocytes obtained from fish fed a ß-glucan-supplemented diet for one month was compared to that of leukocytes obtained from fish fed a control diet. Altogether, these findings contribute to increase our knowledge regarding the effects of ß-glucans on fish adaptive responses.

12.
Mucosal Immunol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960319

RESUMEN

Tissue-resident memory T cells (TRM) can be induced by infection and vaccination, and play a key role in maintaining long-term protective immunity against mucosal pathogens. Our studies explored the key factors and mechanisms affecting the differentiation, maturation, and stable residence of gastric epithelial CD4+ TRM induced by Helicobacter pylori (Hp) vaccine and optimized Hp vaccination to promote the generation and residence of TRM.CD38 regulated mitochondrial activity and enhanced TGF-ß signal transduction to promote the differentiation and residence of gastric epithelial CD4+ TRM by mediating the expression of CD105. Extracellular nucleotides influenced the long-term maintenance of TRM in gastric epithelium by P2RX7. Vitamin D3 and Gram-positive enhancer matrix particles (GEMs)as immune adjuvants combined with Hp vaccination promoted the production of CD69+CD103+CD4+ TRM.

13.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38960484

RESUMEN

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Asunto(s)
Microbioma Gastrointestinal , Metaloproteínas , Especies Reactivas de Oxígeno , Xenobióticos , Xenobióticos/metabolismo , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Especies Reactivas de Oxígeno/metabolismo
14.
BMC Vet Res ; 20(1): 290, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965554

RESUMEN

Edwardsiellosis is a bacterial fish disease that mostly occurs in freshwater farms and is characterized by a high mortality rate. Edwardsiella tarda strain was recovered from 17 fish out of 50 Nile tilapia, which were harboring clinical signs of systemic septicemia. The level of un-ionized ammonia (NH3) in the fish farm's water was 0.11-0.15 mg/L, which was stressful for the Nile tilapia.Sequencing of the gyrB1 gene confirmed that the isolate was E. tarda JALO4, and it was submitted to NCBI under the accession number PP449014. The isolated E. tarda harbored the virulence gene edw1 AHL-synthase (quorum sensing). In addition, the isolate was sensitive to trimethoprim and sulfamethoxazole mean while it was intermediate to florfenicol. The median lethal dose (LD50) of E. tarda JALO4 was determined to be 1.7 × 105 CFU/mL in Nile tilapia.In the indoor experiment, Nile tilapia (45.05 ± 0.4 g), which received dietary Spirulina platensis (5 and 10 g/kg fish feed), showed optimum growth and feed utilization. Meanwhile, after receiving dietary S. platensis, the fish's feed conversion ratio (FCR) was significantly enhanced compared to the control, which was 1.94, 1.99, and 2.88, respectively. The expression of immune-related genes interleukin (IL)-1ß and tumor necrosis factor (TNF)-α were upsurged in E. tarda-challenged fish with higher intensity in S. platensis groups. Dietary S. platensis at a dose of 10 g/kg fish feed could provide a relative protection level (RPL) of 22.2% Nile tilapia challenged against E. tarda. Nile tilapia experimentally infected E. tarda, drastically altering their behavior: higher operculum movement, low food apprehension, and abnormal swimming dietary S. platensis (10 g/kg fish feed) could rapidly restore normal status.It was concluded that Edwardsiellosis could alter Nile tilapia behavior with a high loss in fish population. Fish received dietary-S. platensis could rapidly restore normal behavior after E. tarda infection. It is recommended the incorporation of S. platensis at doses of 10 g/kg into the Nile tilapia diet to boost their immunity and counteract E. tarda infection.


Asunto(s)
Alimentación Animal , Cíclidos , Edwardsiella tarda , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Spirulina , Animales , Cíclidos/inmunología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Alimentación Animal/análisis , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/prevención & control , Acuicultura , Dieta/veterinaria
15.
Chin Med ; 19(1): 95, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965625

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a common type of dementia characterized by amyloid-ß (Aß) accumulation, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory effect, attenuates Aß-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal its mode of action. METHODS: Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly reduces Aß aggregation, a thioflavin T assay and dot blot were performed after incubating Aß with RUR. RESULTS: RUR administration attenuated the Aß-induced memory impairment in 5xFAD mice. Furthermore, decreased accumulation of Aß was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal organelles around Aß. In particular, RUR treatment downregulated the expression of ß-site amyloid precursor protein cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggregation of Aß, and eliminated Aß oligomers in vitro. CONCLUSIONS: This study showed that RUR could attenuate Aß-induced pathology and directly regulate the aggregation of Aß. These results suggest that RUR could be an efficient material for AD treatment through Aß regulation.

16.
Zool Res ; 45(4): 857-874, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39004863

RESUMEN

Emerging evidence indicates that sleep deprivation (SD) can lead to Alzheimer's disease (AD)-related pathological changes and cognitive decline. However, the underlying mechanisms remain obscure. In the present study, we identified the existence of a microbiota-gut-brain axis in cognitive deficits resulting from chronic SD and revealed a potential pathway by which gut microbiota affects cognitive functioning in chronic SD. Our findings demonstrated that chronic SD in mice not only led to cognitive decline but also induced gut microbiota dysbiosis, elevated NLRP3 inflammasome expression, GSK-3ß activation, autophagy dysfunction, and tau hyperphosphorylation in the hippocampus. Colonization with the "SD microbiota" replicated the pathological and behavioral abnormalities observed in chronic sleep-deprived mice. Remarkably, both the deletion of NLRP3 in NLRP3 -/- mice and specific knockdown of NLRP3 in the hippocampus restored autophagic flux, suppressed tau hyperphosphorylation, and ameliorated cognitive deficits induced by chronic SD, while GSK-3ß activity was not regulated by the NLRP3 inflammasome in chronic SD. Notably, deletion of NLRP3 reversed NLRP3 inflammasome activation, autophagy deficits, and tau hyperphosphorylation induced by GSK-3ß activation in primary hippocampal neurons, suggesting that GSK-3ß, as a regulator of NLRP3-mediated autophagy dysfunction, plays a significant role in promoting tau hyperphosphorylation. Thus, gut microbiota dysbiosis was identified as a contributor to chronic SD-induced tau pathology via NLRP3-mediated autophagy dysfunction, ultimately leading to cognitive deficits. Overall, these findings highlight GSK-3ß as a regulator of NLRP3-mediated autophagy dysfunction, playing a critical role in promoting tau hyperphosphorylation.


Asunto(s)
Autofagia , Disbiosis , Microbioma Gastrointestinal , Proteína con Dominio Pirina 3 de la Familia NLR , Privación de Sueño , Proteínas tau , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Microbioma Gastrointestinal/fisiología , Privación de Sueño/metabolismo , Privación de Sueño/fisiopatología , Privación de Sueño/complicaciones , Ratones , Autofagia/fisiología , Proteínas tau/metabolismo , Proteínas tau/genética , Masculino , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inflamasomas/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-39005132

RESUMEN

Alzheimer's Disease (AD) is a devastating neurological condition characterized by a progressive decline in cognitive function, including memory loss, reasoning difficulties, and disorientation. Its hallmark features include the formation of neurofibrillary tangles and neuritic plaques in the brain, disrupting normal neuronal function. Neurofibrillary tangles, composed of phosphorylated tau protein and neuritic plaques, containing amyloid-ß protein (Aß) aggregates, contribute to the degenerative process. The discovery of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) in 1999 revolutionized our understanding of AD pathogenesis. BACE1 plays a crucial role in the production of Aß, the toxic protein implicated in AD progression. Elevated levels of BACE1 have been observed in AD brains and bodily fluids, underscoring its significance in disease onset and progression. Despite setbacks in clinical trials of BACE1 inhibitors due to efficacy and safety concerns, targeting BACE1 remains a promising therapeutic strategy for early-stage AD. Natural flavonoids have emerged as potential BACE1 inhibitors, demonstrating the ability to reduce Aß production in neuronal cells and inhibit BACE1 activity. In our review, we delve into the pathophysiology of AD, highlighting the central role of BACE1 in Aß production and disease progression. We explore the therapeutic potential of BACE1 inhibitors, including natural flavonoids, in controlling AD symptoms. Additionally, we provide insights into ongoing clinical trials and available patents in this field, shedding light on future directions for AD treatment research.

18.
Front Pediatr ; 12: 1418963, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005507

RESUMEN

Background: 3ß-hydroxy-Δ5-C27-steroid-oxidoreductase (3ß-HSD) deficiency is a bile acid synthesis disorder that leads to the absence of normal primary bile acids and the accumulation of abnormal bile acids. This results in cholestatic jaundice, fat-soluble vitamin deficiency, acholic or fatty stools and failure to thrive. Bile acid supplementation is used to treat 3ß-HSD-deficiency and its symptoms. Methods: This report details the case of a 28-year-old woman diagnosed with 3ß-HSD-deficiency, who was treated with glycine-conjugated deoxycholic acid (gDCA). Results: gDCA treatment successfully restored normal bile acid levels, improved body weight by reducing fat malabsorption, and was well-tolerated with no observed liver problems or side effects. Conclusions: As a potent FXR ligand, gDCA might exert its action through FXR activation leading to bile acid synthesis regulation.

19.
Front Pharmacol ; 15: 1382094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005931

RESUMEN

Key features of chronic kidney disease (CKD) include tubulointerstitial inflammation and fibrosis. Protease activated receptor-2 (PAR2), a G-protein coupled receptor (GPCR) expressed by the kidney proximal tubular cells, induces potent proinflammatory responses in these cells. The hypothesis tested here was that PAR2 signalling can contribute to both inflammation and fibrosis in the kidney by transactivating known disease associated pathways. Using a primary cell culture model of human kidney tubular epithelial cells (HTEC), PAR2 activation induced a concentration dependent, PAR2 antagonist sensitive, secretion of TNF, CSF2, MMP-9, PAI-1 and CTGF. Transcription factors activated by the PAR2 agonist 2F, including NFκB, AP1 and Smad2, were critical for production of these cytokines. A TGF-ß receptor-1 (TGF-ßRI) kinase inhibitor, SB431542, and an EGFR kinase inhibitor, AG1478, ameliorated 2F induced secretion of TNF, CSF2, MMP-9, and PAI-1. Whilst an EGFR blocking antibody, cetuximab, blocked PAR2 induced EGFR and ERK phosphorylation, a TGF-ßRII blocking antibody failed to influence PAR2 induced secretion of PAI-1. Notably simultaneous activation of TGF-ßRII (TGF-ß1) and PAR2 (2F) synergistically enhanced secretion of TNF (2.2-fold), CSF2 (4.4-fold), MMP-9 (15-fold), and PAI-1 (2.5-fold). In summary PAR2 activates critical inflammatory and fibrotic signalling pathways in human kidney tubular epithelial cells. Biased antagonists of PAR2 should be explored as a potential therapy for CKD.

20.
J Cancer ; 15(14): 4490-4502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006077

RESUMEN

Ovarian cancer is one of the gynecological malignancies with the highest mortality rate. Its widespread metastasis is difficult to cure, and the beneficiaries of targeted therapy are still limited, which has been a long-standing bottleneck problem. MAGUK P55 scaffold protein 7 (MPP7) plays an important role in the establishment of epithelial cell polarity, but its potential significance in epithelial ovarian cancer is still unclear. In this study, we investigated the expression profile of MPP7 and its functional role in epithelial ovarian cancer. Through analysis of TCGA and GEO databases, combined with immunohistochemical staining of ovarian tumor tissue chips, it was found that MPP7 is significantly overexpressed in epithelial ovarian cancer tissue, and its high expression is closely related to poor prognosis of patients. It has been verified through cell function experiments that interference with MPP7 can inhibit the proliferation, migration, and invasion of ovarian cancer cells in vitro. Performing planar polarity immunofluorescence staining on ovarian cancer cells revealed that interference with MPP7 can cause polarity changes in ovarian cancer cells. The transcriptome sequencing results of the ovarian cancer database were analyzed, and Western Blot was used to verify that MPP7 may mediate EMT via Wnt/ß-catenin signaling pathway and promote changes in cell polarity in human epithelial ovarian cancer, thereby promoting cancer progression, demonstrating the potential of MPP7 as a new biomarker and target for the diagnosis and treatment of ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...