Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37445688

RESUMEN

Immunoproteasome inhibition is a promising strategy for the treatment of hematological malignancies, autoimmune diseases, and inflammatory diseases. The design of non-covalent inhibitors of the immunoproteasome ß1i/ß5i catalytic subunits could be a novel approach to avoid the drawbacks of the known covalent inhibitors, such as toxicity due to off-target binding. In this work, we report the biological evaluation of thirty-four compounds selected from a commercially available collection. These hit compounds are the outcomes of a virtual screening strategy including a dynamic pharmacophore modeling approach onto the ß1i subunit and a pharmacophore/docking approach onto the ß5i subunit. The computational studies were first followed by in vitro enzymatic assays at 100 µM. Only compounds capable of inhibiting the enzymatic activity by more than 50% were characterized in detail using Tian continuous assays, determining the dissociation constant (Ki) of the non-covalent complex where Ki is also the measure of the binding affinity. Seven out of thirty-four hits showed to inhibit ß1i and/or ß5i subunit. Compound 3 is the most active on the ß1i subunit with Ki = 11.84 ± 1.63 µM, and compound 17 showed Ki = 12.50 ± 0.77 µM on the ß5i subunit. Compound 2 showed inhibitory activity on both subunits (Ki = 12.53 ± 0.18 and Ki = 31.95 ± 0.81 on the ß1i subunit and ß5i subunit, respectively). The induced fit docking analysis revealed interactions with Thr1 and Phe31 of ß1i subunit and that represent new key residues as reported in our previous work. Onto ß5i subunit, it interacts with the key residues Thr1, Thr21, and Tyr169. This last hit compound identified represents an interesting starting point for further optimization of ß1i/ß5i dual inhibitors of the immunoproteasome.


Asunto(s)
Enfermedades Autoinmunes , Inhibidores de Proteasoma , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Dominio Catalítico , Fagocitosis , Técnicas In Vitro , Complejo de la Endopetidasa Proteasomal/metabolismo
2.
Front Pharmacol ; 11: 885, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595507

RESUMEN

Cardiac hypertrophy without appropriate treatment eventually progresses to heart failure. Our recent data demonstrated that the immunoproteasome subunit ß5i promotes cardiac hypertrophy. However, whether ß5i is a promising therapeutic target for treating hypertrophic remodeling remains unknown. Here, we investigated the effects of PR-957, a ß5i-specific inhibitor, on angiotensin II (Ang II)-induced hypertrophic remodeling in the murine heart. The infusion of Ang II increased immunoproteasome chymotrypsin-like activity and ß5i catalytic subunit expression in the heart, whereas PR-957 treatment fully blocked the enhanced immunoproteasome activity caused by Ang II. Moreover, the administration of PR-957 significantly suppressed Ang II-induced cardiac hypertrophy, fibrosis, and inflammation. Mechanistically, PR-957 treatment inhibited phosphatase and tensin homolog on chromosome ten (PTEN) degradation, thereby inhibiting multiple signals including AKT/mTOR, ERK1/2, transforming growth factor-ß, and IKB/NF-kB. Furthermore, PTEN blocking by its specific inhibitor VO-OHpic markedly attenuated the inhibitory effect of PR-957 on Ang II-induced cardiac hypertrophy in mice. We conclude that PR-957 blocks PTEN degradation and activates its downstream mediators, thereby attenuating Ang II-induced cardiac hypertrophy. These findings highlight that PR-957 may be a potential therapeutic agent for Ang II-induced hypertrophic remodeling.

3.
Am J Physiol Endocrinol Metab ; 318(6): E892-E900, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255680

RESUMEN

Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when ß-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible ß5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of ß5i-containing intermediate proteasomes was significantly increased in these cells, as was ß5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon ß5i small interfering RNA-mediated knockdown. Finally, the fraction of ß-cells expressing the ß5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that ß5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estrés del Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Islotes Pancreáticos/metabolismo , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Ratas
4.
Neuropathol Appl Neurobiol ; 46(6): 579-587, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32144790

RESUMEN

AIMS: Nakajo-Nishimura syndrome (NNS) is an autosomal recessive disease caused by biallelic mutations in the PSMB8 gene that encodes the immunoproteasome subunit ß5i. There have been only a limited number of reports on the clinicopathological features of the disease in genetically confirmed cases. METHODS: We studied clinical and pathological features of three NNS patients who all carry the homozygous p.G201V mutations in PSMB8. Patients' muscle specimens were analysed with histology and immunohistochemistry. RESULTS: All patients had episodes of typical periodic fever and skin rash, and later developed progressive muscle weakness and atrophy, similar to previous reports. Oral corticosteroid was used for treatment but showed no obvious efficacy. On muscle pathology, lymphocytes were present in the endomysium surrounding non-necrotic fibres, as well as in the perimysium perivascular area. Nearly all fibres strongly expressed MHC-I in the sarcolemma. In the eldest patient, there were abnormal protein aggregates in the sarcoplasm, immunoreactive to p62, TDP-43 and ubiquitin antibodies. CONCLUSIONS: These results suggest that inflammation, inclusion pathology and aggregation of abnormal proteins underlie the progressive clinical course of the NNS pathomechanism.


Asunto(s)
Eritema Nudoso/genética , Eritema Nudoso/patología , Dedos/anomalías , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Miositis/genética , Miositis/patología , Retículo Sarcoplasmático/patología , Adulto , Edad de Inicio , Preescolar , Exantema/genética , Exantema/patología , Femenino , Fiebre/genética , Fiebre/patología , Dedos/patología , Genes MHC Clase I/genética , Humanos , Lactante , Linfocitos/patología , Masculino , Debilidad Muscular/genética , Debilidad Muscular/patología , Mutación/genética , Fibras Nerviosas/patología , Complejo de la Endopetidasa Proteasomal/genética , Sarcolema/patología , Adulto Joven
5.
J Pathol ; 250(3): 275-287, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31758542

RESUMEN

The immunoproteasome contains three catalytic subunits (ß1i, ß2i and ß5i) that are important modulators of immune cell homeostasis. A previous study showed a correlation between ß5i and human atherosclerotic plaque instability; however, the causative role of ß5i in atherosclerosis and the underlying mechanisms remain unknown. Here we explored this issue in apolipoprotein E (Apoe) knockout (eKO) mice with genetic deletion or pharmacological inhibition of ß5i. We found that ß5i expression was upregulated in lesional macrophages after an atherogenic diet (ATD). ß5i/Apoe double KO (dKO) mice fed on the ATD had a significant decrease in both lesion area and necrotic core area, compared with eKO controls. Moreover, dKO mice had less caspase-3+ apoptotic cell accumulation but enhanced efferocytosis of apoptotic cells and increased expression of Mer receptor tyrosine kinase (MERTK). Consistently, similar phenotypes were observed in eKO mice transplanted with dKO bone marrow or treated with ß5i-specific inhibitor PR-957. Mechanistic studies in vitro revealed that ß5i deletion reduced IκBα degradation and inhibited NF-κB activation, promoting Mertk transcription and efferocytosis, thereby attenuating apoptotic cell accumulation. In conclusion, we demonstrate that ß5i plays an important role in diet-induced atherosclerosis by altering MERTK-mediated efferocytosis. ß5i might be a potential pharmaceutical target against atherosclerosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Dieta Alta en Grasa , Macrófagos/metabolismo , Fagocitosis/fisiología , Tirosina Quinasa c-Mer/metabolismo , Animales , Apolipoproteínas E/metabolismo , Apoptosis/fisiología , Aterosclerosis/genética , Aterosclerosis/patología , Caspasa 3/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Ratones Noqueados , FN-kappa B/metabolismo , Oligopéptidos/farmacología , Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma/farmacología
6.
Mol Ther ; 28(1): 279-292, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31636038

RESUMEN

Inflammation is associated with retinal diseases. Our recent data demonstrate that immunoproteasome catalytic subunit ß2i contributes to angiotensin II (Ang II)-induced retinopathy in mice. Here, we investigated the role of another catalytic subunit ß5i in regulating retinopathy and its underlying mechanisms. We induced a murine model of retinopathy by infusing Ang II (3,000 ng/kg/min) for 3 weeks into wild-type (WT) mice, ß5i-knockout (KO) mice, or WT mice injected with either adenovirus-expressing ß5i (Ad-ß5i) or angiotensin II type 1 receptor (AT1R)-associated protein (Ad-ATRAP), which inhibits AT1R. The ß5i expression and chymotrypsin-like activity were most significantly elevated in Ang II-infused retinas and serum from patients with hypertensive retinopathy. Moreover, Ang II infusion-induced retinopathy was markedly attenuated in ß5i-KO mice but aggravated in Ad-ß5i-injected mice. Accordingly, ß5i KO markedly restored Ang II-induced downregulation of ATRAP and activation of AT1R downstream mediators, which was further enhanced in Ad-ß5i-injected mice. Interestingly, overexpression of ATRAP significantly abrogated Ang II-induced retinopathy in Ad-ß5i-injected mice. This study found that ß5i promoted Ang II-induced retinopathy by promoting ATRAP degradation and activation of AT1R-mediated signals.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Retinopatía Hipertensiva/sangre , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteolisis , Adulto , Anciano , Angiotensina II/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Vectores Genéticos , Humanos , Retinopatía Hipertensiva/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Transducción de Señal/genética
7.
J Mol Cell Cardiol ; 137: 34-45, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31629736

RESUMEN

Hypertensive cardiac remodeling is a major cause of heart failure. The immunoproteasome is an inducible form of the proteasome and its catalytic subunit ß5i (also named LMP7) is involved in angiotensin II-induced atrial fibrillation; however, its role in deoxycorticosterone-acetate (DOCA)-salt-induced cardiac remodeling remains unclear. C57BL/6 J wild-type (WT) and ß5i knockout (ß5i KO) mice were subjected to uninephrectomy (sham) and DOCA-salt treatment for three weeks. Cardiac function, fibrosis, and inflammation were evaluated by echocardiography and histological analysis. Protein and gene expression levels were analyzed by quantitative real-time PCR and immunoblotting. Our results showed that after 21 days of DOCA-salt treatment, ß5i expression and chymotrypsin-like activity were the most significantly increased factors in the heart compared with the sham control. Moreover, DOCA-salt-induced elevation of blood pressure, adverse cardiac function, chamber and myocyte hypertrophy, interstitial fibrosis, oxidative stress, and inflammation were markedly attenuated in ß5i KO mice. These findings were verified in ß5i inhibitor PR-957-treated mice. Moreover, blocking of PTEN (the gene of phosphate and tensin homolog deleted on chromosome ten) markedly attenuated the inhibitory effect of ß5i knockout on DOCA-salt-induced cardiac remodeling. Mechanistically, DOCA-salt stress upregulated the expression of ß5i, which promoted the degradation of PTEN and the activation of downstream signals (AKT/mTOR, TGF-ß1/Smad2/3, NOX, and NF-κB), which ultimately led to cardiac hypertrophic remodeling. This study provides new evidence of the critical role of ß5i in DOCA-salt-induced cardiac remodeling through the regulation of PTEN stability, and indicates that the inhibition of ß5i may be a promising therapeutic target for the treatment of hypertensive heart diseases.


Asunto(s)
Hipertensión/metabolismo , Hipertensión/fisiopatología , Complejo de la Endopetidasa Proteasomal/metabolismo , Subunidades de Proteína/metabolismo , Remodelación Ventricular , Animales , Cardiomegalia/complicaciones , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Quimotripsina/metabolismo , Acetato de Desoxicorticosterona , Fibrosis , Hipertensión/complicaciones , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Regulación hacia Arriba
8.
Molecules ; 24(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315311

RESUMEN

Large-scale virtual screening of boronic acid derivatives was performed to identify nonpeptidic covalent inhibitors of the ß5i subunit of the immunoproteasome. A hierarchical virtual screening cascade including noncovalent and covalent docking steps was applied to a virtual library of over 104,000 compounds. Then, 32 virtual hits were selected, out of which five were experimentally confirmed. Biophysical and biochemical tests showed micromolar binding affinity and time-dependent inhibitory potency for two compounds. These results validate the computational protocol that allows the screening of large compound collections. One of the lead-like boronic acid derivatives identified as a covalent immunoproteasome inhibitor is a suitable starting point for chemical optimization.


Asunto(s)
Ácidos Borónicos/química , Inhibidores de Proteasoma/química , Ácidos Borónicos/farmacología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasoma/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA