Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Methods Mol Biol ; 2824: 67-80, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039406

RESUMEN

RT-qPCR allows the detection of viruses and the monitoring of viral replication. This technique was extensively employed during the SARS-CoV-2 pandemic, where it demonstrated its efficiency and robustness. Here we describe the analysis of Rift Valley fever and Toscana virus infections over time, achieved through the RT-qPCR quantification of the viral genome. We further elaborate on the method to discriminate between genomic and antigenomic viral RNAs by using primers specific for each strand during the reverse transcription step.


Asunto(s)
ARN Viral , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift/genética , ARN Viral/genética , Fiebre del Valle del Rift/virología , Fiebre del Valle del Rift/diagnóstico , Humanos , Genoma Viral , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Replicación Viral/genética , Animales
2.
Viruses ; 16(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38932114

RESUMEN

When designing live-attenuated respiratory syncytial virus (RSV) vaccine candidates, attenuating mutations can be developed through biologic selection or reverse-genetic manipulation and may include point mutations, codon and gene deletions, and genome rearrangements. Attenuation typically involves the reduction in virus replication, due to direct effects on viral structural and replicative machinery or viral factors that antagonize host defense or cause disease. However, attenuation must balance reduced replication and immunogenic antigen expression. In the present study, we explored a new approach in order to discover attenuating mutations. Specifically, we used protein structure modeling and computational methods to identify amino acid substitutions in the RSV nonstructural protein 1 (NS1) predicted to cause various levels of structural perturbation. Twelve different mutations predicted to alter the NS1 protein structure were introduced into infectious virus and analyzed in cell culture for effects on viral mRNA and protein expression, interferon and cytokine expression, and caspase activation. We found the use of structure-based machine learning to predict amino acid substitutions that reduce the thermodynamic stability of NS1 resulted in various levels of loss of NS1 function, exemplified by effects including reduced multi-cycle viral replication in cells competent for type I interferon, reduced expression of viral mRNAs and proteins, and increased interferon and apoptosis responses.


Asunto(s)
Aprendizaje Automático , Vacunas contra Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Vacunas contra Virus Sincitial Respiratorio/inmunología , Vacunas contra Virus Sincitial Respiratorio/genética , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/inmunología , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/genética , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones por Virus Sincitial Respiratorio/inmunología , Sustitución de Aminoácidos , Mutación , Línea Celular
3.
Insects ; 15(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786859

RESUMEN

Insects constitute the largest proportion of animals on Earth and act as significant reservoirs and vectors in disease transmission. Rice thrips (Haplothrips aculeatus, family Phlaeothripidae) are one of the most common pests in agriculture. In this study, the full genome sequence of a novel Ollusvirus, provisionally named "Rice thrips ollusvirus 1" (RTOV1), was elucidated using transcriptome sequencing and the rapid amplification of cDNA ends (RACE). A homology search and phylogenetic tree analysis revealed that the newly identified virus is a member of the family Aliusviridae (order Jingchuvirales). The genome of RTOV1 contains four predicted open reading frames (ORFs), including a polymerase protein (L, 7590 nt), a glycoprotein (G, 4206 nt), a nucleocapsid protein (N, 2415 nt) and a small protein of unknown function (291 nt). All of the ORFs are encoded by the complementary genome, suggesting that the virus is a negative-stranded RNA virus. Phylogenetic analysis using polymerase sequences suggested that RTOV1 was closely related to ollusvirus 1. Deep small RNA sequencing analysis reveals a significant accumulation of small RNAs derived from RTOV1, indicating that the virus replicated in the insect. According to our understanding, this is the first report of an Ollusvirus identified in a member of the insect family Phlaeothripidae. The characterisation and discovery of RTOV1 is a significant contribution to the understanding of Ollusvirus diversity in insects.

4.
Methods Mol Biol ; 2786: 25-49, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814389

RESUMEN

Self-replicating RNA derived from the genomes of positive-strand RNA viruses represents a powerful tool for both molecular studies on virus biology and approaches to novel safe and effective vaccines. The following chapter summarizes the principles how such RNAs can be established and used for design of vaccines. Due to the large variety of strategies needed to circumvent specific pitfalls in the design of such constructs the technical details of the experiments are not described here but can be found in the cited literature.


Asunto(s)
Genoma Viral , ARN Viral , ARN Viral/genética , Virus ARN Monocatenarios Positivos/genética , Replicación Viral/genética , Humanos , Animales
5.
Trends Genet ; 40(8): 681-693, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38724328

RESUMEN

Positive-strand RNA [(+)RNA] viruses include pandemic SARS-CoV-2, tumor-inducing hepatitis C virus, debilitating chikungunya virus (CHIKV), lethal encephalitis viruses, and many other major pathogens. (+)RNA viruses replicate their RNA genomes in virus-induced replication organelles (ROs) that also evolve new viral species and variants by recombination and mutation and are crucial virus control targets. Recent cryo-electron microscopy (cryo-EM) reveals that viral RNA replication proteins form striking ringed 'crowns' at RO vesicle junctions with the cytosol. These crowns direct RO vesicle formation, viral (-)RNA and (+)RNA synthesis and capping, innate immune escape, and transfer of progeny (+)RNA genomes into translation and encapsidation. Ongoing studies are illuminating crown assembly, sequential functions, host factor interactions, etc., with significant implications for control and beneficial uses of viruses.


Asunto(s)
Genoma Viral , Orgánulos , ARN Viral , Replicación Viral , Replicación Viral/genética , Humanos , Genoma Viral/genética , Orgánulos/virología , Orgánulos/genética , Orgánulos/ultraestructura , ARN Viral/genética , Virus ARN Monocatenarios Positivos/genética , Microscopía por Crioelectrón , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Ensamble de Virus/genética , Compartimentos de Replicación Viral , Animales
6.
Proc Natl Acad Sci U S A ; 121(12): e2319582121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38483998

RESUMEN

The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.


Asunto(s)
Ascomicetos , Virus Fúngicos , Malus , Micosis , Virus ARN , Ascomicetos/genética , Virus ARN/genética , Enfermedades de las Plantas/microbiología , Malus/metabolismo
7.
Plants (Basel) ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38256804

RESUMEN

The genetic variation and population structure of gene N (nucleocapsid) and part of gene L (replicase) from 13 eggplant mottle dwarf virus (EMDV) isolates from Spain were evaluated and compared with sequences of EMDV isolates from other countries retrieved from GenBank. Phylogenetic inference of part of gene L showed three main clades, one containing an EMDV isolate from Australia and the other two containing isolates from Iran and Europe, as well as four subclades. EMDV isolates from Spain were genetically very similar and grouped in a subclade together with one isolate from Germany and one from the UK. No new recombination events were detected in addition to one recombination previously reported, suggesting that recombination is rare for EMDV. The comparison of synonymous and non-synonymous rates showed that negative selection played an important role, and only two codons were under positive selection. Genetic differentiation (Fst test), phylogenetic and nucleotide diversity analyses suggest a unique introduction of EMDV to Spain and low gene flow with other countries. In contrast, Greece and Italy showed diverse populations with high gene flow between both.

8.
Plant Commun ; 5(1): 100659, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37434356

RESUMEN

Increasing evidence suggests that mitogen-activated protein kinase (MAPK) cascades play a crucial role in plant defense against viruses. However, the mechanisms that underlie the activation of MAPK cascades in response to viral infection remain unclear. In this study, we discovered that phosphatidic acid (PA) represents a major class of lipids that respond to Potato virus Y (PVY) at an early stage of infection. We identified NbPLDα1 (Nicotiana benthamiana phospholipase Dα1) as the key enzyme responsible for increased PA levels during PVY infection and found that it plays an antiviral role. 6K2 of PVY interacts with NbPLDα1, leading to elevated PA levels. In addition, NbPLDα1 and PA are recruited by 6K2 to membrane-bound viral replication complexes. On the other hand, 6K2 also induces activation of the MAPK pathway, dependent on its interaction with NbPLDα1 and the derived PA. PA binds to WIPK/SIPK/NTF4, prompting their phosphorylation of WRKY8. Notably, spraying with exogenous PA is sufficient to activate the MAPK pathway. Knockdown of the MEK2-WIPK/SIPK-WRKY8 cascade resulted in enhanced accumulation of PVY genomic RNA. 6K2 of Turnip mosaic virus and p33 of Tomato bushy stunt virus also interacted with NbPLDα1 and induced the activation of MAPK-mediated immunity. Loss of function of NbPLDα1 inhibited virus-induced activation of MAPK cascades and promoted viral RNA accumulation. Thus, activation of MAPK-mediated immunity by NbPLDα1-derived PA is a common strategy employed by hosts to counteract positive-strand RNA virus infection.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Virus ARN Monocatenarios Positivos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Virus ARN Monocatenarios Positivos/metabolismo , Ácidos Fosfatidicos , Sistema de Señalización de MAP Quinasas , Fosforilación
9.
Proc Natl Acad Sci U S A ; 120(52): e2307423120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38109552

RESUMEN

Hepatitis E virus (HEV) is a major cause of acute hepatitis worldwide. As the other positive-strand RNA viruses, it is believed to replicate its genome in a membrane-associated replication complex. However, current understanding of the host factors required for productive HEV infection is limited and the site as well as the composition of the HEV replication complex are still poorly characterized. To identify host factors required for HEV RNA replication, we performed a genome-wide CRISPR/Cas9 screen in permissive human cell lines harboring subgenomic HEV replicons allowing for positive and negative selection. Among the validated candidates, Ras-related early endosomal protein Rab5A was selected for further characterization. siRNA-mediated silencing of Rab5A and its effectors APPL1 and EEA1, but not of the late and recycling endosome components Rab7A and Rab11A, respectively, significantly reduced HEV RNA replication. Furthermore, pharmacological inhibition of Rab5A and of dynamin-2, required for the formation of early endosomes, resulted in a dose-dependent decrease of HEV RNA replication. Colocalization studies revealed close proximity of Rab5A, the HEV ORF1 protein, corresponding to the viral replicase, as well as HEV positive- and negative-strand RNA. In conclusion, we successfully exploited CRISPR/Cas9 and selectable subgenomic replicons to identify host factors of a noncytolytic virus. This approach revealed a role for Rab5A and early endosomes in HEV RNA replication, likely by serving as a scaffold for the establishment of functional replication complexes. Our findings yield insights into the HEV life cycle and the virus-host interactions required for productive infection.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Virus de la Hepatitis E/genética , Sistemas CRISPR-Cas , Endosomas/genética , Endosomas/metabolismo , Replicación Viral/genética , ARN Viral/genética
10.
Wiley Interdiscip Rev RNA ; : e1826, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985142

RESUMEN

Host factors play essential roles in viral infection, and their interactions with viral proteins are necessary for establishing effective pathogenesis. p53 is a host factor that maintains genomic integrity by controlling cell-cycle progression and cell survival. It is a well-known tumor suppressor protein that gets activated by various stress signals, thereby regulating cellular pathways. The cellular outcomes from different stresses are tightly related to p53 dynamics, including its alterations at gene, mRNA, or protein levels. p53 also contributes to immune responses leading to the abolition of viral pathogens. In turn, the viruses have evolved strategies to subvert p53-mediated host responses to improve their life cycle and pathogenesis. Some viruses attenuate wild-type p53 (WT-p53) function for successful pathogenesis, including degradation and sequestration of p53. In contrast, some others exploit the WT-p53 function through regulation at the transcriptional/translational level to spread infection. One area in which the importance of such host factors is increasingly emerging is the positive-strand RNA viruses that cause fatal viral infections. In this review, we provide insight into all the possible mechanisms of p53 modulation exploited by the positive-strand RNA viruses to establish infection. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.

11.
J Virol ; 97(9): e0057223, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37695056

RESUMEN

The non-structural (NS) proteins of the Flaviviridae members play a dual role in genome replication and virion morphogenesis. For pestiviruses, like bovine viral diarrhea virus, the NS2-3 region and its processing by the NS2 autoprotease is of particular importance. While uncleaved NS2-3 in complex with NS4A is essential for virion assembly, it cannot replace free NS3/4A in the viral replicase. Furthermore, surface interactions between NS3 and the C-terminal cytosolic domain of NS4A were shown to serve as a molecular switch between RNA replication and virion morphogenesis. To further characterize the functionality of NS4A, we performed an alanine-scanning mutagenesis of two NS4A regions, a short highly conserved cytoplasmic linker downstream of the transmembrane domain and the C-terminal domain. NS4A residues critical for polyprotein processing, RNA replication, and/or virion morphogenesis were identified. Three double-alanine mutants, two in the linker region and one close to the C-terminus of NS4A, showed a selective effect on virion assembly. All three packaging defective mutants could be rescued by a selected set of two second-site mutations, located in NS2 and NS3, respectively. This phenotype was additionally confirmed by complementation studies providing the NS2-3/4A packaging molecules containing the rescue mutations in trans. This indicates that the linker region and the cytosolic C-terminal part of NS4A are critical for the formation of protein complexes required for virion morphogenesis. The ability of the identified sets of second-site mutations in NS2-3 to compensate for diverse NS4A defects highlights a surprising functional flexibility for pestiviral NS proteins. IMPORTANCE Positive-strand RNA viruses have a limited coding capacity due to their rather small genome size. To overcome this constraint, viral proteins often exhibit multiple functions that come into play at different stages during the viral replication cycle. The molecular basis for this multifunctionality is often unknown. For the bovine viral diarrhea virus, the non-structural protein (NS) 4A functions as an NS3 protease cofactor, a replicase building block, and a component in virion morphogenesis. Here, we identified the critical amino acids of its C-terminal cytosolic region involved in those processes and show that second-site mutations in NS2 and NS3 can compensate for diverse NS4A defects in virion morphogenesis. The ability to evolve alternative functional solutions by gain-of-function mutations highlights the astounding plasticity of the pestiviral system.


Asunto(s)
Virus de la Diarrea Viral Bovina , Proteínas no Estructurales Virales , Replicación Viral , Humanos , Virus de la Diarrea Viral Bovina/genética , Hepacivirus/metabolismo , Mutación , Proteínas no Estructurales Virales/metabolismo , Ensamble de Virus , Línea Celular , Animales
12.
Pathogens ; 12(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37242377

RESUMEN

The phylogenetic relationships of ninety-five rose rosette virus (RRV) isolates with full-length genomic sequences were analyzed. These isolates were recovered mostly from commercial roses that are vegetatively propagated rather than grown from seed. First, the genome segments were concatenated, and the maximum likelihood (ML) tree shows that the branches arrange independent of their geographic origination. There were six major groups of isolates, with 54 isolates in group 6 and distributed in two subgroups. An analysis of nucleotide diversity across the concatenated isolates showed lower genetic differences among RNAs encoding the core proteins required for encapsidation than the latter genome segments. Recombination breakpoints were identified near the junctions of several genome segments, suggesting that the genetic exchange of segments contributes to differences among isolates. The ML analysis of individual RNA segments revealed different relationship patterns among isolates, which supports the notion of genome reassortment. We tracked the branch positions of two newly sequenced isolates to highlight how genome segments relate to segments of other isolates. RNA6 has an interesting pattern of single-nucleotide mutations that appear to influence amino acid changes in the protein products derived from ORF6a and ORF6b. The P6a proteins were typically 61 residues, although three isolates encoded P6a proteins truncated to 29 residues, and four proteins extended 76-94 residues. Homologous P5 and P7 proteins appear to be evolving independently. These results suggest greater diversity among RRV isolates than previously recognized.

13.
J Biol Chem ; 299(6): 104819, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37187292

RESUMEN

Severe fever with thrombocytopenia syndrome virus (SFTSV), which has been reported in China, Korea, Japan, Vietnam, and Taiwan, is a causative agent of severe fever thrombocytopenia syndrome. This virus has a high mortality and induces thrombocytopenia and leukocytopenia in humans, cats, and aged ferrets, whereas immunocompetent adult mice infected with SFTSV never show symptoms. Anti-SFTSV antibodies have been detected in several animals-including goats, sheep, cattle, and pigs. However, there are no reports of severe fever thrombocytopenia syndrome in these animals. Previous studies have reported that the nonstructural protein NSs of SFTSV inhibits the type I interferon (IFN-I) response through the sequestration of human signal transducer and activator of transcription (STAT) proteins. In this study, comparative analysis of the function of NSs as IFN antagonists in human, cat, dog, ferret, mouse, and pig cells revealed a correlation between pathogenicity of SFTSV and the function of NSs in each animal. Furthermore, we found that the inhibition of IFN-I signaling and phosphorylation of STAT1 and STAT2 by NSs depended on the binding ability of NSs to STAT1 and STAT2. Our results imply that the function of NSs in antagonizing STAT2 determines the species-specific pathogenicity of SFTSV.


Asunto(s)
Interferón Tipo I , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Proteínas no Estructurales Virales , Anciano , Animales , Bovinos , Perros , Humanos , Ratones , Hurones , Interferón Tipo I/metabolismo , Phlebovirus/fisiología , Síndrome de Trombocitopenia Febril Grave/virología , Ovinos , Transducción de Señal , Porcinos , Trombocitopenia/metabolismo , Proteínas no Estructurales Virales/metabolismo
14.
mBio ; 14(4): e0024023, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37162347

RESUMEN

Mitoviruses in the family Mitoviridae are the mitochondria-replicating "naked RNA viruses" with genomes encoding only the replicase RNA-dependent RNA polymerase (RdRp) and prevalent across fungi, plants, and invertebrates. Arbuscular mycorrhizal fungi in the subphylum Glomeromycotina are obligate plant symbionts that deliver water and nutrients to the host. We discovered distinct mitoviruses in glomeromycotinian fungi, namely "large duamitovirus," encoding unusually large RdRp with a unique N-terminal motif that is endogenized in some host genomes. More than 400 viral sequences similar to the large duamitoviruses are present in metatranscriptome databases. They are globally distributed in soil ecosystems, consistent with the cosmopolitan distribution of glomeromycotinian fungi, and formed the most basal clade of the Mitoviridae in phylogenetic analysis. Given that glomeromycotinian fungi are the only confirmed hosts of these viruses, we propose the hypothesis that large duamitoviruses are the most ancestral lineage of the Mitoviridae that have been maintained exclusively in glomeromycotinian fungi.


Asunto(s)
Glomeromycota , Micorrizas , Virus ARN , Micorrizas/genética , Simbiosis , Filogenia , Ecosistema , Glomeromycota/genética , Plantas/microbiología , Virus ARN/genética , ARN Polimerasa Dependiente del ARN/genética
15.
Viruses ; 15(2)2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36851490

RESUMEN

Flaviviruses represent a large group of globally significant, insect-borne pathogens. For many of these viruses, there is a lack of antivirals and vaccines. Thus, there is a need to continue the development of tools to further advance our efforts to combat these pathogens, including reverse genetics techniques. Traditionally, reverse genetics methods for flaviviruses rely on producing infectious RNA from in vitro transcription reactions followed by electroporation or transfection into permissive cell lines. However, the production of Zika virus has been successful from CMV promoter-driven expression plasmids, which provides cost and time advantages. In this report, we describe the design and construction of a DNA-launched infectious clone for dengue virus (DENV) serotype 2 strain 16681. An artificial intron was introduced in the nonstructural protein 1 segment of the viral genome to promote stability in bacteria. We found that rescued viruses maintained the ability to form plaques and replicate efficiently in commonly used cell lines. Thus, we present a rapid and cost-effective method for producing DENV2 strain 16681 from plasmid DNA. This construct will be a useful platform for the continued development of anti-DENV therapeutics and vaccines.


Asunto(s)
Enfermedades Transmisibles , Infección por el Virus Zika , Virus Zika , Humanos , Línea Celular , Antivirales , Electroporación , Células Clonales
16.
Proc Natl Acad Sci U S A ; 120(5): e2217412120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36693094

RESUMEN

Positive-strand RNA viruses replicate their genomes in virus-induced membrane vesicles, and the resulting RNA replication complexes are a major target for virus control. Nodavirus studies first revealed viral RNA replication proteins forming a 12-fold symmetric "crown" at the vesicle opening to the cytosol, an arrangement recently confirmed to extend to distantly related alphaviruses. Using cryoelectron microscopy (cryo-EM), we show that mature nodavirus crowns comprise two stacked 12-mer rings of multidomain viral RNA replication protein A. Each ring contains an ~19 nm circle of C-proximal polymerase domains, differentiated by strikingly diverged positions of N-proximal RNA capping/membrane binding domains. The lower ring is a "proto-crown" precursor that assembles prior to RNA template recruitment, RNA synthesis, and replication vesicle formation. In this proto-crown, the N-proximal segments interact to form a toroidal central floor, whose 3.1 Å resolution structure reveals many mechanistic details of the RNA capping/membrane binding domains. In the upper ring, cryo-EM fitting indicates that the N-proximal domains extend radially outside the polymerases, forming separated, membrane-binding "legs." The polymerase and N-proximal domains are connected by a long linker accommodating the conformational switch between the two rings and possibly also polymerase movements associated with RNA synthesis and nonsymmetric electron density in the lower center of mature crowns. The results reveal remarkable viral protein multifunctionality, conformational flexibility, and evolutionary plasticity and insights into (+)RNA virus replication and control.


Asunto(s)
Virus ARN , Proteínas Virales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación de ARN , Microscopía por Crioelectrón , Virus ARN/genética , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral/genética
17.
Pathogens ; 11(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36558848

RESUMEN

To study the host range of Rose rosette virus (RRV), we employed crude sap inoculum extracted from RRV-infected roses and the RRV infectious clone. We inoculated plants from the families Solanaceae, Cucurbitaceae, Leguminosae, Malvaceae, Amaranthaceae, and Brassicaceae. Reverse transcription-polymerase chain reaction (RT-PCR) was used to detect RRV in the inoculated plants throughout their growth stages. Interestingly, RRV was detected in the newly developed leaves of tomato, pepper, tobacco, cucumber, squash, zucchini, pumpkin, pea, peanut, soybean, spinach, okra, and Chenopodium spp. The speed of upward advancement of RRV within infected plants was variable between plants as it took two to three weeks for some plant species and up to five weeks in other plant species to emerge in the newest leaves. No severe symptoms were detected on most of the inoculated plants. Chenopodium spp., spinach, cucumber and Nicotiana rustica exhibited either chlorotic or necrotic lesions with variable shapes and patterns on the systemically infected leaves. Double membrane-bound particles of 80-120 nm in diameter were detected by transmission electron microscopy in the infected tissues of cucumber, pepper, and N. benthamiana plants. This finding infers the validity of mechanical inoculation for RRV on a wide range of plants that would serve as potential natural reservoirs.

18.
Viruses ; 14(12)2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36560619

RESUMEN

The 3' untranslated regions (UTRs) of positive-strand RNA plant viruses commonly contain elements that promote viral replication and translation. The ~700 nt 3'UTR of umbravirus pea enation mosaic virus 2 (PEMV2) contains three 3' cap-independent translation enhancers (3'CITEs), including one (PTE) found in members of several genera in the family Tombusviridae and another (the 3'TSS) found in numerous umbraviruses and several carmoviruses. In addition, three 3' terminal replication elements are found in nearly every umbravirus and carmovirus. For this report, we have identified a set of three hairpins and a putative pseudoknot, collectively termed "Trio", that are exclusively found in a subset of umbraviruses and are located just upstream of the 3'TSS. Modification of these elements had no impact on viral translation in wheat germ extracts or in translation of luciferase reporter constructs in vivo. In contrast, Trio hairpins were critical for viral RNA accumulation in Arabidopsis thaliana protoplasts and for replication of a non-autonomously replicating replicon using a trans-replication system in Nicotiana benthamiana leaves. Trio and other 3' terminal elements involved in viral replication are highly conserved in umbraviruses possessing different classes of upstream 3'CITEs, suggesting conservation of replication mechanisms among umbraviruses despite variation in mechanisms for translation enhancement.


Asunto(s)
Carmovirus , Tombusviridae , Tombusviridae/genética , Tombusviridae/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral , Regiones no Traducidas 3' , Biosíntesis de Proteínas
19.
Viruses ; 14(12)2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36560715

RESUMEN

Positive-strand RNA virus RNA genome replication occurs in membrane-associated RNA replication complexes (RCs). Nodavirus RCs are outer mitochondrial membrane invaginations whose necked openings to the cytosol are "crowned" by a 12-fold symmetrical proteinaceous ring that functions as the main engine of RNA replication. Similar protein crowns recently visualized at the openings of alphavirus and coronavirus RCs highlight their broad conservation and functional importance. Using cryo-EM tomography, we earlier showed that the major nodavirus crown constituent is viral protein A, whose polymerase, RNA capping, membrane interaction and multimerization domains drive RC formation and function. Other viral proteins are strong candidates for unassigned EM density in the crown. RNA-binding RNAi inhibitor protein B2 co-immunoprecipitates with protein A and could form crown subdomains that protect nascent viral RNA and dsRNA templates. Capsid protein may interact with the crown since nodavirus virion assembly has spatial and other links to RNA replication. Using cryoelectron tomography and complementary approaches, we show that, even when formed in mammalian cells, nodavirus RC crowns generated without B2 and capsid proteins are functional and structurally indistinguishable from mature crowns in infected Drosophila cells expressing all viral proteins. Thus, the only nodaviral factors essential to form functional RCs and crowns are RNA replication protein A and an RNA template. We also resolve apparent conflicts in prior results on B2 localization in infected cells, revealing at least two distinguishable pools of B2. The results have significant implications for crown structure, assembly, function and control as an antiviral target.


Asunto(s)
Replicación de ARN , Proteínas Virales , Animales , Proteínas Virales/genética , Replicación Viral , Ensamble de Virus , Proteínas de la Cápside/genética , Drosophila/genética , ARN Bicatenario , ARN Viral/genética , ARN Viral/metabolismo , Mamíferos
20.
Microbiol Spectr ; 10(6): e0305022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374107

RESUMEN

Tobamoviruses are agriculturally relevant viruses that cause crop losses and have infected plants in many regions of the world. These viruses are frequently found in municipal wastewater, likely coming from human diet and industrial waste across wastewater catchment areas. As part of a large wastewater-based epidemiology study across Southern California, we analyzed RNA sequence data from 275 influent wastewater samples obtained from eight wastewater treatment plants with a catchment area of approximately 16 million people from July 2020 to August 2021. We assembled 1,083 high-quality genomes, enumerated viral sequencing reads, and detected thousands of single nucleotide variants from eight common tobamoviruses: bell pepper mottle virus, cucumber green mottle mosaic virus, pepper mild mottle virus, tobacco mild green mosaic virus, tomato brown rugose fruit virus, tomato mosaic virus, tomato mottle mosaic virus, and tropical soda apple mosaic virus. We show that single nucleotide variants had amino acid-altering consequences along with synonymous mutations, which represents potential evolution with functional consequences in genomes of these viruses. Our study shows the importance of wastewater sequencing to monitor the genomic diversity of these plant-infecting viruses, and we suggest that our data could be used to continue tracking the genomic variability of such pathogens. IMPORTANCE Diseases caused by viruses in the genus Tobamovirus cause crop losses around the world. As with other viruses, mutation occurring in the virus's genomes can have functional consequences and may alter viral infectivity. Many of these plant-infecting viruses have been found in wastewater, likely coming from human consumption of infected plants and produce. By sequencing RNA extracted from influent wastewater obtained from eight wastewater treatment plants in Southern California, we assembled high-quality viral genomes and detected thousands of single nucleotide variants from eight tobamoviruses. Our study shows that Tobamovirus genomes vary at many positions, which may have important consequences when designing assays for the detection of these viruses by agricultural or environmental scientists.


Asunto(s)
Tobamovirus , Aguas Residuales , Secuencia de Bases , Genoma Viral , Nucleótidos , ARN , Tobamovirus/genética , Aguas Residuales/virología , California
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA