Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Yakugaku Zasshi ; 143(11): 951-962, 2023 Nov 01.
Artículo en Japonés | MEDLINE | ID: mdl-37558432

RESUMEN

Recently, a novel quantitative method using relative molar sensitivity (RMS) was applied to quantify the ingredients of drugs and foods. An important development in this regard can be observed in the Japanese Pharmacopoeia (JP) 18, where the quantification of perillaldehyde, an unstable compound, in crude drug "Perilla Herb," was revised to incorporate the RMS method. In this study, the primary objective was to improve the tester safety and reduce the amount of reagents used in the JP test. To achieve this, the quantification of three toxic Aconitum monoester alkaloids (AMAs) was explored using the RMS method, employing a single reference compound for all three targets. These AMAs, namely benzoylmesaconine hydrochloride, benzoylhypaconine hydrochloride, and 14-anisoylaconine hydrochloride, which are the quantitative compounds of Kampo extracts containing Aconite Root (AR), were quantified using the reference compound benzoic acid (BA). Reliable RMS values were obtained using both 1H-quantitative NMR and HPLC/UV. Using the RMS of three AMAs relative to the BA, the AMA content (%) in commercial AMAs quantitative reagents were determined without analytical standards. Moreover, the quantitative values of AMAs using the RMS method and the calibration curve method using the three analytical standards were similar. Additionally, similar values were achieved for the three AMAs in the Kampo extracts containing AR using the RMS and the modified JP18 calibration curve methods. These results suggest that the RMS method is suitable for quantitative assays of the Kampo extracts containing AR and can serve as an alternative to the current method specified in the JP18.


Asunto(s)
Aconitum , Alcaloides , Preparaciones de Plantas , Aconitum/química , Alcaloides/química , Cromatografía Líquida de Alta Presión/métodos , Preparaciones de Plantas/química
2.
J Nat Med ; 77(4): 829-838, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450205

RESUMEN

Safranal is one flavor component of saffron, which is used as a spice, food additive, and crude drug. In ISO3632, safranal is defined as the compound that contributes to the quality of saffron, and many quantitative determination methods for safranal have been reported. However, safranal is volatile and degrades easily during storage, and an analytical standard with an exact known purity is not commercially available, making it difficult to quantify accurately the content of safranal in saffron. Here, we developed a method for quantifying safranal using relative molar sensitivity (RMS), called the RMS method, using a GC-flame ionization detector (GC-FID). We determined the RMS of safranal to 1,4-bis(trimethylsilyl)benzene-d4, a certified reference material commercially available, by a combination of quantitative NMR and chromatography. Using two GC-FID instruments made by different manufacturers to evaluate inter-instrument effect, the resultant RMS was 0.770, and the inter-instrument difference was 0.6%. The test solution, with a known safranal concentration, was measured by the RMS method, with an accuracy of 99.4-101%, repeatability of 0.81%, and reproducibility of 0.81-1.3%. Given the ease of degradation, high volatility, and uncertain purity of safranal reagents, the RMS method is a more accurate quantification approach compared to the calibration curve method and methods based on absorption spectrophotometry. Moreover, our findings revealed that the GC-FID makeup gas affected the RMS and quantitative values.


Asunto(s)
Crocus , Crocus/química , Ionización de Llama , Reproducibilidad de los Resultados , Extractos Vegetales/química , Terpenos/metabolismo , Ciclohexenos/análisis , Ciclohexenos/metabolismo
3.
Chem Pharm Bull (Tokyo) ; 69(1): 18-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33390516

RESUMEN

Mogroside V is one of the characteristic and effective components of luohanguo extract, a food additive used as a sweetener in Japan as per Japan's Standards and Specifications for Food Additives (JSFA; 9th ed.). JSFA stipulates that the quantitative determination for mogroside V content in luohanguo extract applies HPLC using analytical standard mogroside V. However, no mogroside V reagents with proven purities are commercially available. Therefore the current JSFA determination method is not particularly suited for daily quality control operations involving luohanguo extract. In this study, we applied an alternative quantitative method using a single reference with relative molar sensitivity (RMS). It was possible to calculate the accurate RMS by an offline combination of 1H-quantitative NMR spectroscopy (1H-qNMR) and an HPLC/variable-wavelength detector (VWD). Using the RMS of mogroside V to a commercial certified reference material grade caffeine, the mogroside V contents in luohanguo extracts could be determined using HPLC/VWD without analytical standard mogroside V. There was no significant difference between the mogroside V contents in luohanguo extracts determined using the method employing single-reference caffeine with the RMS and using the JSFA method. The absolute calibration curve for the latter was prepared using an analytical standard mogroside V whose purity was determined by 1H-qNMR. These results demonstrate that our proposed method using a single reference with RMS is suitable for quantitative determination of mogroside V in luohanguo extract and can be used as an alternative method to the current assay method in JSFA.


Asunto(s)
Cafeína/análisis , Cucurbitaceae/química , Aditivos Alimentarios/análisis , Extractos Vegetales/análisis , Triterpenos/análisis , Cafeína/normas , Cromatografía Líquida de Alta Presión/normas , Aditivos Alimentarios/normas , Japón , Espectroscopía de Resonancia Magnética/normas , Extractos Vegetales/normas , Control de Calidad , Triterpenos/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA