Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 17(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930361

RESUMEN

This study investigates the impact of residue soil (RS) powder on the 3D printability of geopolymer composites based on fly ash and ground granulated blast furnace slag. RS is incorporated into the geopolymer mixture, with its inclusion ranging from 0% to 110% of the combined mass of fly ash and finely ground blast furnace slag. Seven groups of geopolymers were designed and tested for their flowability, setting time, rheology, open time, extrudability, shape retention, buildability, and mechanical properties. The results showed that with the increase in RS content, the fluidity of geopolymer mortar decreases, and the setting time increases first and then decreases. The static yield stress, dynamic yield stress, and apparent viscosity of geopolymer mortar increase with the increase in RS content. For an RS content between 10% and 90%, the corresponding fluidity is above 145 mm, and the yield stress is controlled within the range of 2800 Pa, which meets the requirements of extrusion molding. Except for RS-110, geopolymer mortars with other RS contents showed good extrudability and shape retention. The compressive strength of 3D printing samples of geopolymer mortar containing RS has obvious anisotropy.

2.
Materials (Basel) ; 16(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570008

RESUMEN

This study was conducted to evaluate the accuracy of 3D-printed surgical guides before and after sterilization in a steam sterilizer. A test-model incorporating three implant replicas was customized. A total of forty guides were printed from five printable resins. A group made from a self-curing composite served as control group. The guides were checked for fit. Vertical discrepancies between the model and guides were measured at standardized points at a load of 500 g (P1). The guides were connected to implant replicas and scanned, and their angles were digitally measured. The specimens were sterilized in a steam sterilizer at 121 °C for 20 min at 2 bar pressure. Vertical discrepancies (P2) and angulations were remeasured. Additionally, the specimens were repositioned with an increased load, and measurements were repeated (P3). All specimens were repositionable after sterilization. The smallest variation in discrepancy at a 500 g load was 428 µm, whereas the greatest was 1487 µm. Under an increased force, the smallest change was 94 µm, while the greatest was 260 µm. The level of significance α = 0.05 (95% confidence interval) was set for all tests. The variation in the measured angles was not statistically significant (Kruskal-Wallis's test, p > 0.05). The accuracy was affected by the material and sterilization, but it was clinically acceptable when an increased load was applied during repositioning.

3.
Proc Inst Mech Eng H ; 237(8): 1029-1036, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37417741

RESUMEN

Mechanical circulatory support devices (MCSDs) are often associated with hemocompatible complications such as hemolysis and gastrointestinal bleeding when treating patients with end-stage heart failure. Shear stress and exposure time have been identified as the two most important mechanical factors causing blood damage. However, the materials of MCSDs may also induce blood damage when contacting with blood. In this study, the red blood cell and von Willebrand Factor (VWF) damage caused by four 3D printing biomaterials were investigated, including acrylic, PCISO, Somos EvoLVe 128, and stainless steel. A roller pump circulation experimental platform and a rotor blood-shearing experimental platform were constructed to mimic static and dynamic blood-contacting conditions of materials in MCSDs, respectively. Free hemoglobin assay and VWF molecular weight analysis were performed on the experimental blood samples. It indicated that different 3D printing materials and technology could induce different levels of damage to red blood cells and VWF, with acrylic causing the least damage under both static and dynamic conditions. In addition, it was found that blood damage measured for the same material differed on the two platforms. Therefore, a combination of static and dynamic experiments should be used to comprehensively investigate the effects of blood damage caused by the material. It can provide a reference for the design and evaluation of materials in different components of MCSDs.


Asunto(s)
Corazón Auxiliar , Factor de von Willebrand , Humanos , Factor de von Willebrand/análisis , Materiales Biocompatibles , Eritrocitos/química , Hemólisis , Impresión Tridimensional , Estrés Mecánico
4.
Med Nov Technol Devices ; 17: None, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36909661

RESUMEN

3D printing technology is an emerging technology. It constructs solid bodies by stacking materials layer by layer, and can quickly and accurately prepare bone tissue engineering scaffolds with specific shapes and structures to meet the needs of different patients. The field of life sciences has received a great deal of attention. However, different 3D printing technologies and materials have their advantages and disadvantages, and there are limitations in clinical application. In this paper, the technology, materials and clinical applications of 3D printed bone tissue engineering scaffolds are reviewed, and the future development trends and challenges in this field are prospected.

5.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617119

RESUMEN

The spread of additive manufacturing techniques in the prototyping and realization of high-frequency applications renewed the interest in the characterization of the electromagnetic properties of both dielectric and conductive materials, as well as the design of new versatile measurement techniques. In this framework, a new configuration of a dielectric-loaded resonator is presented. Its optimization, realization, and use are presented. A measurement repeatability of about one order of magnitude lower than the commonly found values (10-3 on the Q-factor and 15×10-6 on the resonance frequency, given in terms of the relative standard deviations of repeated measurements) was reached thanks to the design of a closed resonator in which the samples can be loaded without disassembling the whole measurement fixture. The uncertainty levels, the ease of use, and the versatility of the realized system make its use of potential interest in numerous scenarios.

6.
Med Phys ; 49(12): 7766-7778, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36121424

RESUMEN

INTRODUCTION: Three-dimensional printing is a promising technology to produce phantoms for quality assurance and dosimetry in X-ray imaging. Crucial to this, however, is the use of tissue equivalent printing materials. It was thus the aim of this study to evaluate the properties of a larger number of commercially available printing filaments with respect to their attenuation and absorption of X-rays. MATERIALS AND METHODS: Apparent kerma attenuation coefficients (AKACs) and absorbed doses for different X-ray spectra (tube voltages, 70-140 kV) were measured and simulated by Monte-Carlo computations for a larger number of fused-deposition-modeling (FDM) materials. The results were compared with the respective values simulated for reference body tissues. In addition, the properties of polylactide acid samples printed with reduced infill densities were investigated. RESULTS: Measured and simulated AKACs and absorbed doses agreed well with each other and in case of AKACs also with attenuation coefficients derived from the reference database of the National Institute of Standards and Technology (NIST). For lung, adipose, muscle, and bulk soft tissue as well as for spongiosa (cancellous bone), printed materials with equivalent attenuation as well as absorption properties could be identified. In contrast, none of the considered printed materials was equivalent to cortical bone. CONCLUSION: Several FDM materials have been identified as well-suited substitutes for body tissues in terms of the investigated material characteristics. They can therefore be used for in-house production of individualized and task-specific phantoms for image quality assessment and dose measurements in X-ray imaging.


Asunto(s)
Impresión Tridimensional , Radiometría , Rayos X , Radiografía , Fantasmas de Imagen
7.
Biosensors (Basel) ; 12(5)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35624610

RESUMEN

This manuscript investigates the chemical and structural stability of 3D printing materials (3DPMs) frequently used in electrochemistry. Four 3D printing materials were studied: Clear photopolymer, Elastic photopolymer, PET filament, and PLA filament. Their stability, solubility, structural changes, flexibility, hardness, and color changes were investigated after exposure to selected organic solvents and supporting electrolytes. Furthermore, the available potential windows and behavior of redox probes in selected supporting electrolytes were investigated before and after the exposure of the 3D-printed objects to the electrolytes at various working electrodes. Possible electrochemically active interferences with an origin from the 3DPMs were also monitored to provide a comprehensive outline for the use of 3DPMs in electrochemical platform manufacturing.


Asunto(s)
Impresión Tridimensional , Electroquímica , Electrodos
8.
J Sep Sci ; 44(6): 1078-1088, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32898296

RESUMEN

Three-dimensional printing applications in separation science are currently limited by the lack of materials compatible with chromatographic operations and three-dimensional printing technologies. In this work, we propose a new material for Digital Light Processing printing to fabricate functional ion exchange monoliths in a single step. Through copolymerization of the bifunctional monomer [2-(acryloyloxy)ethyl] trimethylammonium chloride, monolithic structures with quaternary amine ligands were fabricated. The novel formulation was optimized in terms of protein binding and recovery, microporous structure, and its swelling susceptibility by increasing its cross-link density and employing cyclohexanol and dodecanol as pore forming agents. In static conditions, the material demonstrated a maximum binding capacity of 104.2 ± 10.6 mg/mL for bovine serum albumin, in line with commercially available materials. Its anion exchange behavior was validated by separating bovine serum albumin and myoglobin on a monolithic bed with Schoen gyroid morphology. The same column geometry was tested for the purification of C-phycocyanin from clarified as well as cell-laden Arthrospira platensis feedstocks. This represents the first demonstration of one-step printed stationary phases to capture proteins directly from solid-laden feedstocks. We believe that the material presented here represents a significant improvement towards implementation of three-dimensional printed chromatography media in the field of separation science.

9.
Materials (Basel) ; 13(7)2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32244663

RESUMEN

The crack propagation and failure of 3D-printed samples with prefabricated K-S fissures (a kinked fissure and a straight fissure) were observed under uniaxial compression, and the strain and displacement of the sample surface were quantified by the digital image correlation (DIC) method. The experimental results show that the branch inclination angle of the kinked fissure is an important factor affecting the crack initial position, and the evolution of the strain field during the failure process of the sample can better reflect the cracking law of the internal fissures. Furthermore, two coalescence modes are classified: Mode I is a tension-shear composite failure formed by the penetration of the tension-shear composite crack; Mode II is a tensile failure that penetrates the whole samples during the failure process without rock bridge damage. In addition, the numerical simulation results were well consistent with the cracking and failure modes.

10.
3D Print Med ; 6(1): 9, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32297041

RESUMEN

BACKGROUND: Fused deposition modeling 3D printing is used in medicine for diverse purposes such as creating patient-specific anatomical models and surgical instruments. For use in the sterile surgical field, it is necessary to understand the mechanical behavior of these prints across 3D printing materials and after autoclaving. It has been previously understood that steam sterilization weakens polylactic acid, however, annealing heat treatment of polylactic acid increases its crystallinity and mechanical strength. We aim to identify an optimal and commercially available 3D printing process that minimizes distortion after annealing and autoclaving and to quantify mechanical strength after these interventions. METHODS: Thirty millimeters cubes with four different infill geometries were 3D printed and subjected to hot water-bath annealing then immediate autoclaving. Seven commercially available 3D printing materials were tested to understand their mechanical behavior after intervention. The dimensions in the X, Y, and Z axes were measured before and after annealing, and again after subsequent autoclaving. Standard and strength-optimized Army-Navy retractor designs were printed using the 3D printing material and infill geometry that deformed the least. These retractors were subjected to annealing and autoclaving interventions and tested for differences in mechanical strength. RESULTS: For both the annealing and subsequent autoclaving intervention, the material and infill geometry that deformed the least, respectively, was Essentium PLA Gray and "grid". Standard retractors without intervention failed at 95 N +/- 2.4 N. Annealed retractors failed at 127.3 N +/- 10 N. Autoclave only retractors failed at 15.7 N +/- 1.4 N. Annealed then autoclaved retractors failed at 19.8 N +/- 3.1 N. Strength-optimized retractors, after the annealing then autoclaving intervention, failed at 164.8 N +/- 12.5 N. CONCLUSION: For 30 mm cubes, the 3D printing material and infill geometry that deformed the least, respectively, was Essentium PLA and "grid". Hot water-bath annealing results in increased 3D printed model strength, however autoclaving 3D prints markedly diminishes strength. Strength-optimized 3D printed PLA Army-Navy retractors overcome the strength limitation due to autoclaving.

11.
Materials (Basel) ; 12(24)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835874

RESUMEN

Acrylonitrile butadiene styrene (ABS) is the oldest fused filament fabrication (FFF) material that shows low stability to thermal aging due to hydrogen abstraction of the butadiene monomer. A novel blend of ABS, polypropylene (PP), and polyethylene graft maleic anhydride (PE-g-MAH) is presented for FFF. ANOVA was used to analyze the effects of three variables (bed temperature, printing temperature, and aging interval) on tensile properties of the specimens made on a custom-built pellet printer. The compression and flexure properties were also investigated for the highest thermal combinations. The blend showed high thermal stability with enhanced strength despite three days of aging, as well as high bed and printing temperatures. Fourier-transform infrared spectroscopy (FTIR) provided significant chemical interactions. Differential scanning calorimetry (DSC) confirmed the thermal stability with enhanced enthalpy of glass transition and melting. Thermogravimetric analysis (TGA) also revealed high temperatures for onset and 50% mass degradation. Signs of chemical grafting and physical interlocking in scanning electron microscopy (SEM) also explained the thermo-mechanical stability of the blend.

12.
Polymers (Basel) ; 10(9)2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30960857

RESUMEN

Three dimensional (3D) printing materials were manufactured with polylactic acid (PLA) and poplar powder using the twin screw extruder and 3D printing consumables extruder. Lubricant (TPW604) and toughening agent polyolefin elastomer (POE) were utilized to improve the fluidity and toughness of the materials. 3D printing materials were tested by infrared spectroscopy, X-ray diffraction, melt flow rate, rheology behavior, impact and scanning electron microscope. The results show that the poplar powder could decrease impact strength of PLA, the same as TPW604. Unlike poplar powder, TPW604 can improve the fluidity of 3D printing materials. And POE can fill the voids formed by poplar powder in PLA, enhance interface compatibility between poplar powder and PLA, and effectively improve the fluidity and impact strength of 3D printing materials.

13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-700008

RESUMEN

Objective To propose a method for accurately controlling the resistivity of 3D printing materials to facilitate to establish a human-head volume conductor model.Methods Two kinds of ABS/CB composite conductive printing materials covering the resistivity ranges of parenchymal and skull were selected through resistivity measurement and analysis. The correlation between the proportions and resistivities of the two kinds of ABS/CB materials and the empirical formula on the correlation between the resistivity and proportion was obtained through exponential function fitting. Results The selected ABS/CB composite material behaved well in frequency stability and time stability,and the obtained empirical formula had high-correlation coefficient.Conclusion Accurate control of 3D printing model resistivity is realized,and it's facilitated to gain 3D printing material with the same resistivity as those of skull and parenchymal.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA