Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Vet Res ; 55(1): 110, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300570

RESUMEN

Duck hepatitis A virus type 1 (DHAV-1) is an important member of the Picornaviridae family that causes highly fatal hepatitis in ducklings. Since picornaviruses have small genomes with limited coding capacity, they must utilize host proteins for viral cap-independent translation and RNA replication. Here, we report the role of duck poly(rC)-binding protein 2 (PCBP2) in regulating the replication and translation of DHAV-1. During DHAV-1 infection, PCBP2 expression was upregulated. A biotinylated RNA pull-down assay revealed that PCBP2 positively regulates DHAV-1 translation through specific interactions with structural domains II and III of the DHAV-1 internal ribosome entry site (IRES). Further studies revealed that PCBP2 promotes DHAV-1 replication via an interaction of its KH1 domain (aa 1-92) with DHAV-1 3Dpol. Thus, our studies demonstrated the specific role of PCBP2 in regulating DHAV-1 translation and replication, revealing a novel mechanism by which host‒virus interactions regulate viral translation and replication. These findings contribute to further understanding of the pathogenesis of picornavirus infections.


Asunto(s)
Patos , Virus de la Hepatitis del Pato , Infecciones por Picornaviridae , Enfermedades de las Aves de Corral , Proteínas de Unión al ARN , Replicación Viral , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Virus de la Hepatitis del Pato/fisiología , Virus de la Hepatitis del Pato/genética , Enfermedades de las Aves de Corral/virología , Infecciones por Picornaviridae/veterinaria , Infecciones por Picornaviridae/virología , Hepatitis Viral Animal/virología , Biosíntesis de Proteínas
2.
FASEB J ; 38(14): e23822, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39072864

RESUMEN

Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.


Asunto(s)
Virus de la Fiebre Aftosa , Conformación de Ácido Nucleico , ARN Viral , Replicación Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Replicación Viral/genética , ARN Viral/genética , ARN Viral/metabolismo , Animales , Regiones no Traducidas 5' , Fiebre Aftosa/virología , Genoma Viral , Línea Celular , Cricetinae
3.
Viruses ; 16(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39066290

RESUMEN

Foot-and-mouth disease virus (FMDV) belongs to the Picornaviridae family and is an important pathogen affecting cloven-hoof livestock. However, neither effective vaccines covering all serotypes nor specific antivirals against FMDV infections are currently available. In this study, we employed virtual screening to screen for secondary metabolite terpenoids targeting the RNA-dependent RNA polymerase (RdRp), or 3Dpol, of FMDV. Subsequently, we identified the potential antiviral activity of the 32 top-ranked terpenoids, revealing that continentalic acid, dehydroabietic acid (abietic diterpenoids), brusatol, bruceine D, and bruceine E (tetracyclic triterpenoids) significantly reduced cytopathic effects and viral infection in the terpenoid-treated, FMDV-infected BHK-21 cells in a dose-dependent manner, with nanomolar to low micromolar levels. The FMDV minigenome assay demonstrated that brusatol and bruceine D, in particular, effectively blocked FMDV 3Dpol activity, exhibiting IC50 values in the range of 0.37-0.39 µM and surpassing the efficacy of the antiviral drug control, ribavirin. Continentalic acid and bruceine E exhibited moderate inhibition of FMDV 3Dpol. The predicted protein-ligand interaction confirmed that these potential terpenoids interacted with the main catalytic and bystander residues of FMDV 3Dpol. Additionally, brusatol and bruceine D exhibited additive effects when combined with ribavirin. In conclusion, terpenoids from natural resources show promise for the development of anti-FMD agents.


Asunto(s)
Antivirales , Virus de la Fiebre Aftosa , Terpenos , Virus de la Fiebre Aftosa/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Animales , Terpenos/farmacología , Terpenos/química , Línea Celular , Replicación Viral/efectos de los fármacos , Simulación por Computador , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Cricetinae , Simulación del Acoplamiento Molecular , Fiebre Aftosa/virología , Fiebre Aftosa/tratamiento farmacológico , Diterpenos/farmacología , Diterpenos/química
4.
Virulence ; 15(1): 2333562, 2024 12.
Artículo en Inglés | MEDLINE | ID: mdl-38622757

RESUMEN

The Picornaviridae are a large group of positive-sense, single-stranded RNA viruses, and most research has focused on the Enterovirus genus, given they present a severe health risk to humans. Other picornaviruses, such as foot-and-mouth disease virus (FMDV) and senecavirus A (SVA), affect agricultural production with high animal mortality to cause huge economic losses. The 3Dpol protein of picornaviruses is widely known to be used for genome replication; however, a growing number of studies have demonstrated its non-polymerase roles, including modulation of host cell biological processes, viral replication complex assembly and localization, autophagy, and innate immune responses. Currently, there is no effective vaccine to control picornavirus diseases widely, and clinical therapeutic strategies have limited efficiency in combating infections. Many efforts have been made to develop different types of drugs to prohibit virus survival; the most important target for drug development is the virus polymerase, a necessary element for virus replication. For picornaviruses, there are also active efforts in targeted 3Dpol drug development. This paper reviews the interaction of 3Dpol proteins with the host and the progress of drug development targeting 3Dpol.


Asunto(s)
Enterovirus , Virus de la Fiebre Aftosa , Infecciones por Picornaviridae , Animales , Humanos , Productos del Gen pol/metabolismo , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Replicación Viral , ARN Viral/genética
5.
Vet Res Commun ; 48(1): 329-343, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37697209

RESUMEN

Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that poses a significant threat to the global livestock industry. However, specific antiviral treatments against FMDV are currently unavailable. This study aimed to evaluate the antiviral activity of anticancer drugs, including kinase and non-kinase inhibitors against FMDV replication in BHK-21 cells. Sorafenib, a multi-kinase inhibitor, demonstrated a significant dose-dependent reduction in FMDV replication. It exhibited a half maximal effective concentration (EC50) value of 2.46 µM at the pre-viral entry stage and 2.03 µM at the post-viral entry stage. Further intracellular assays revealed that sorafenib effectively decreased 3Dpol activity with a half maximal inhibitory concentration (IC50) of 155 nM, while not affecting 3Cpro function. The study indicates that sorafenib influences host protein pathways during FMDV infection, primarily by potentiating the c-RAF canonical pathway and AKT/PI3K pathway. Molecular docking analysis demonstrated specific binding of sorafenib to the active site of FMDV 3Dpol, interacting with crucial catalytic residues, including D245, D338, S298, and N307. Additionally, sorafenib exhibited significant binding affinity to the active site motifs of cellular kinases, namely c-RAF, AKT, and PI3K, which play critical roles in the viral life cycle. The findings suggest that sorafenib holds promise as a therapeutic agent against FMDV infection. Its mechanism of action may involve inhibiting FMDV replication by reducing 3Dpol activity and regulating cellular kinases. This study provides insights for the development of novel therapeutic strategies to combat FMDV infections.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Sorafenib/farmacología , Sorafenib/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Simulación del Acoplamiento Molecular , Línea Celular , Antivirales/farmacología , Replicación Viral
6.
Viruses ; 15(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36680163

RESUMEN

Foot-and-mouth disease virus (FMDV), an economically important pathogen of cloven-hoofed livestock, is a positive-sense, single-stranded RNA virus classified in the Picornaviridae family. RNA-dependent RNA polymerase (RdRp) of RNA viruses is highly conserved. Compounds that bind to the RdRp active site can block viral replication. Herein, we combined double virtual screenings and cell-based antiviral approaches to screen and identify potential inhibitors targeting FMDV RdRp (3Dpol). From 5596 compounds, the blind- followed by focus-docking filtered 21 candidates fitting in the 3Dpol active sites. Using the BHK-21 cell-based assay, we found that four compounds-NSC217697 (quinoline), NSC670283 (spiro compound), NSC292567 (nigericin), and NSC65850-demonstrated dose-dependent antiviral actions in vitro with the EC50 ranging from 0.78 to 3.49 µM. These compounds could significantly block FMDV 3Dpol activity in the cell-based 3Dpol inhibition assay with small IC50 values ranging from 0.8 nM to 0.22 µM without an effect on FMDV's main protease, 3Cpro. The 3Dpol inhibition activities of the compounds were consistent with the decreased viral load and negative-stranded RNA production in a dose-dependent manner. Conclusively, we have identified potential FMDV 3Dpol inhibitors that bound within the enzyme active sites and blocked viral replication. These compounds might be beneficial for FMDV or other picornavirus treatment.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/genética , Antivirales/farmacología , Antivirales/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral
7.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581111

RESUMEN

Many RNA viruses encode a proof-reading deficient, low-fidelity RNA-dependent polymerase (RdRp), which generates genetically diverse populations that can adapt to changing environments and thwart antiviral therapies. 3Dpol, the RdRp of the foot-and-mouth disease virus (FMDV), is responsible for replication of viral genomes. The 3Dpol N terminus encodes a nuclear localization signal (NLS) sequence,MRKTKLAPT, important for import of the protein to host nucleus. Previous studies showed that substitutions at residues 18 and 20 of the NLS are defective in proper incorporation of nucleotides and RNA binding. Here, we use a systematic alanine scanning mutagenesis approach to understand the role of individual residues of the NLS in nuclear localization and nucleotide incorporation activities of 3Dpol We identify two residues of 3Dpol NLS, T19 and L21, that are important for the maintenance of enzyme fidelity. The 3Dpol NLS alanine substitutions of T19 and L21 results in aberrant incorporation of nucleoside analogs, conferring a low fidelity phenotype of the enzyme. A molecular dynamics simulation of RNA- and mutagen (RTP)-bound 3Dpol revealed that the T19 residue participates in a hydrogen bond network, including D165 in motif F and R416 at the C terminus of the FMDV 3Dpol and RNA template-primer. Based on these findings and previous studies, we conclude that at least the first six residues of theMRKTKLAPT sequence motif play a vital role in the maintenance of faithful RNA synthesis activity (fidelity) of FMDV 3Dpol, suggesting that the role of the NLS motif in similar viral polymerases needs to be revisited.IMPORTANCE In this study, we employed genetic and molecular dynamics approaches to analyze the role of individual amino acids of the FMDV 3Dpol nuclear localization signal (NLS). The NLS residues were mutated to alanine using a type A full-genome cDNA clone, and the virus progeny was analyzed for defects in growth and in competition with the parental virus. We identified two mutants in 3Dpol, T19A and L21A, that exhibited high rate of mutation, were sensitive to nucleotide analogs, and displayed reduced replicative fitness compared to the parental virus. Using molecular dynamics simulation, we demonstrated that residues T19 and L21 played a role in the structural configuration of the interaction network at the 3Dpol palm subdomain. Cumulatively, our data suggest that the T19 and L21 3Dpol amino acids are important for maintaining the fidelity of the FMDV polymerase and ensuring faithful replication of the FMDV genome.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Genoma Viral , Simulación de Dinámica Molecular , Mutagénesis , Mutación , Señales de Localización Nuclear/química , Nucleótidos , Conformación Proteica , ARN Viral , Replicación Viral
8.
J Virol ; 94(10)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32161169

RESUMEN

Upon infection, the highly structured 5' untranslated region (5' UTR) of picornavirus is involved in viral protein translation and RNA synthesis. As a critical element in the 5' UTR, the internal ribosome entry site (IRES) binds to various cellular proteins to function in the processes of picornavirus replication. Foot-and-mouth disease virus (FMDV) is an important member in the family Picornaviridae, and its 5' UTR contains a functional IRES element. In this study, the cellular heterogeneous nuclear ribonucleoprotein L (hnRNP L) was identified as an IRES-binding protein for FMDV by biotinylated RNA pulldown assays, mass spectrometry (MS) analysis, and determination of hnRNP L-IRES interaction regions. Further, we found that hnRNP L inhibited the growth of FMDV through binding to the viral IRES and that the inhibitory effect of hnRNP L on FMDV growth was not due to FMDV IRES-mediated translation, but to influence on viral RNA synthesis. Finally, hnRNP L was demonstrated to coimmunoprecipitate with RNA-dependent RNA polymerase (3Dpol) in an FMDV RNA-dependent manner in the infected cells. Thus, our results suggest that hnRNP L, as a critical IRES-binding protein, negatively regulates FMDV replication by inhibiting viral RNA synthesis, possibly by remaining in the replication complex.IMPORTANCE Picornaviruses, as a large family of human and animal pathogens, cause a bewildering array of disease syndromes. Many host factors are implicated in the pathogenesis of these viruses, and some proteins interact with the viral IRES elements to affect function. Here, we report for the first time that cellular hnRNP L specifically interacts with the IRES of the picornavirus FMDV and negatively regulates FMDV replication through inhibiting viral RNA synthesis. Further, our results showed that hnRNP L coimmunoprecipitates with FMDV 3Dpol in a viral RNA-dependent manner, suggesting that it may remain in the replication complex to function. The data presented here would facilitate further understanding of virus-host interactions and the pathogenesis of picornavirus infections.


Asunto(s)
Regiones no Traducidas 5' , Virus de la Fiebre Aftosa/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Sitios Internos de Entrada al Ribosoma/fisiología , ARN Viral/biosíntesis , Replicación Viral/fisiología , Animales , Línea Celular , Virus de la Fiebre Aftosa/genética , Regulación Viral de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Inmunoprecipitación , Unión Proteica , ARN Viral/genética , Transcriptoma
9.
Virus Res ; 270: 197670, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31330206

RESUMEN

The nuclear localization signals (NLS) were usually composed of basic residues (K and R) and played an important role in delivery of genomes and structural protein into nucleus. In this research, we identified that 3Dpol/3CD entered into nucleus during viral propagation of duck hepatitis A virus type 1 (DHAV-1). To investigate the reason that 3Dpol/3CD entered into nucleus, the amino acid sequence of 3CD was analyzed through NLS Mapper program. The basic region 17PRKTAYMRS25 was subsequently proved to be a functional NLS to guide 3Dpol/3CD into nucleus. 18R, 19K and 24R were found essential for maintaining the nuclear targeting activity, and exchange between 24R and 24K had no impact on cellular localization of 3Dpol. Since the entry of 3Dpol/3CD into nucleus was essential for shutoff of host cell transcription and maintaining the viral propagation of picornavirus numbers, our study provided new insights into the mechanism of DHAV-1 propagation.


Asunto(s)
Núcleo Celular/virología , Virus de la Hepatitis del Pato/genética , Señales de Localización Nuclear , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Animales , Virus de la Hepatitis del Pato/enzimología
10.
Emerg Infect Dis ; 25(6): 1204-1208, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31107209

RESUMEN

In 2016, an upsurge of neurologic disease associated with infection with multirecombinant enterovirus A71 subgenogroup C1 lineage viruses was reported in France. These viruses emerged in the 2000s; 1 recombinant is widespread. This virus lineage has the potential to be associated with a long-term risk for severe disease among children.

11.
J Virol ; 91(18)2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28659472

RESUMEN

Enterovirus D68 (EV-D68) is one of the many nonpolio enteroviruses that cause mild to severe respiratory illness. The nonstructural protein 3Dpol is an RNA-dependent RNA polymerase (RdRP) of EV-D68 which plays a critical role in the replication of the viral genome and represents a promising drug target. Here, we report the first three-dimensional crystal structure of the RdRP from EV-D68 in complex with the substrate GTP to 2.3-Å resolution. The RdRP structure is similar to structures of other viral RdRPs, where the three domains, termed the palm, fingers, and thumb, form a structure resembling a cupped right hand. Particularly, an N-terminal fragment (Gly1 to Phe30) bridges the fingers and the thumb domains, which accounts for the enhanced stability of the full-length enzyme over the truncation mutant, as assessed by our thermal shift assays and the dynamic light scattering studies. Additionally, the GTP molecule bound proximal to the active site interacts with both the palm and fingers domains to stabilize the core structure of 3Dpol Interestingly, using limited proteolysis assays, we found that different nucleoside triphosphates (NTPs) stabilize the polymerase structure by various degrees, with GTP and CTP being the most and least stabilizing nucleosides, respectively. Lastly, we derived a model of the core structure of 3Dpol stabilized by GTP, according to our proteolytic studies. The biochemical and biophysical characterizations conducted in this study help us to understand the stability of EV-D68-3Dpol, which may extend to other RdRPs as well.IMPORTANCE Enterovirus D68 (EV-D68) is an emerging viral pathogen, which caused sporadic infections around the world. In recent years, epidemiology studies have reported an increasing number of patients with respiratory diseases globally due to the EV-D68 infection. Moreover, the infection has been associated with acute flaccid paralysis and cranial nerve dysfunction in children. However, there are no vaccines and antiviral treatments specifically targeting the virus to date. In this study, we solved the crystal structure of the RNA-dependent RNA polymerase of EV-D68 and carried out systematic biophysical and biochemical characterizations on the overall and local structural stability of the wild-type (WT) enzyme and several variants, which yields a clear view on the structure-activity relationship of the EV-D68 RNA polymerase.


Asunto(s)
Enterovirus Humano D/enzimología , ARN Polimerasa Dependiente del ARN/química , Cristalografía por Rayos X , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estabilidad Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Temperatura
12.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28515297

RESUMEN

Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates.IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches.


Asunto(s)
Antígenos Virales/genética , Antígenos Virales/metabolismo , Virus de la Fiebre Aftosa/enzimología , Virus de la Fiebre Aftosa/patogenicidad , Ingeniería de Proteínas , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Sustitución de Aminoácidos , Animales , Antivirales , Células Cultivadas , Cricetinae , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Farmacorresistencia Viral , Fluorouracilo/farmacología , Fiebre Aftosa/patología , Fiebre Aftosa/virología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Ratones , Mutagénesis Sitio-Dirigida , Mutación Puntual , Ribavirina/farmacología , Porcinos , Triptófano/genética , Triptófano/metabolismo , Ensayo de Placa Viral
13.
Eur J Med Chem ; 102: 387-97, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26301555

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of livestock caused by a highly variable RNA virus, foot-and-mouth disease virus (FMDV). One of the targets to suppress expansion of and to control FMD is 3D polymerase (FMDV 3Dpol). In this study, 2-amino-4-arylthiazole derivatives were synthesized and evaluated for their inhibitory activity against FMDV 3Dpol. Among them, compound 20i exhibited the most potent functional inhibition (IC50 = 0.39 µM) of FMDV 3D polymerase and compound 24a (EC50 = 13.09 µM) showed more potent antiviral activity than ribavirin (EC50 = 1367 µM) and T1105 (EC50 = 347 µM) with IBRS-2 cells infected by the FMDV O/SKR/2010 strain.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Virus de la Fiebre Aftosa/efectos de los fármacos , Fiebre Aftosa/tratamiento farmacológico , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Antígenos Virales/metabolismo , Antivirales/síntesis química , Antivirales/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Fiebre Aftosa/metabolismo , Virus de la Fiebre Aftosa/enzimología , Estructura Molecular , Relación Estructura-Actividad , Porcinos , Proteínas no Estructurales Virales/metabolismo
14.
Virus Res ; 206: 3-11, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25559071

RESUMEN

Poly(A) tails are functionally important features of all picornavirus RNA genomes. Some viruses have genomes with relatively short poly(A) tails (encephalomyocarditis virus) whereas others have genomes with longer poly(A) tails (polioviruses and rhinoviruses). Here we review the polyadenylation of picornavirus RNA as it relates to the structure and function of 3D(pol). Poliovirus 3D(pol) uses template-dependent reiterative transcription mechanisms as it replicates the poly(A) tails of viral RNA (Steil et al., 2010). These mechanisms are analogous to those involved in the polyadenylation of vesicular stomatitis virus and influenza virus mRNAs. 3D(pol) residues intimately associated with viral RNA templates and products regulate the size of poly(A) tails in viral RNA (Kempf et al., 2013). Consistent with their ancient evolutionary origins, picornavirus 3D(pol) and telomerase reverse transcriptase (TERT) share structural and functional features. Structurally, both 3D(pol) and TERT assume a "right-hand" conformation with thumb, palm and fingers domains encircling templates and products. Functionally, both 3D(pol) and TERT use template-dependent reiterative transcription mechanisms to synthesize repetitive sequences: poly(A) tails in the case of picornavirus RNA genomes and DNA telomeres in the case of eukaryotic chromosomes. Thus, picornaviruses and their eukaryotic hosts (humans and animals) maintain the 3' ends of their respective genomes via evolutionarily related mechanisms.


Asunto(s)
Picornaviridae/enzimología , Poliadenilación , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Modelos Moleculares , Conformación Proteica , ARN Polimerasa Dependiente del ARN/química , Transcripción Genética
15.
J Med Virol ; 86(5): 857-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24114692

RESUMEN

Enterovirus (EV) infections are associated with a wide array of often severe disease presentations including aseptic meningitis, encephalitis, and acute flaccid paralysis. Surveillance for polioviruses and other EVs is therefore important as a public health measure both for patient management and epidemiological studies. From 1988 to 2008, echovirus (E) 30 was the predominant genotype in Spain (33.7% of the total typed EVs). E6 was also endemic throughout this period although isolated less frequently (12.5%). In 2009, however, a substantial increase in the incidence of E6 was detected (60%), displacing E30 type (2%). To investigate the evolution and recombination in the epidemiology and transmission of E6 in Spain, a genetic analysis in VP1 and 3Dpol regions of 67 Spanish strains collected during the period 2004-2010 was performed. All VP1 sequences clustered monophyletically in the assigned genogroup C, subgroup 9, currently the predominant circulating strains identified in Europe and elsewhere in the last 10 years. 3Dpol sequences were interspersed with other species B EVs resulting from several recombination events that generated at least 12 different recombinant forms (RFs) among study samples. These showed typically minimal divergence in VP1. The co-circulation of different lineages of E6 in the same geographical area associated with its mainly endemic pattern of transmission may have contributed to the extremely short estimated half-life of E6 RFs (0.87 years). This pattern contrasts markedly with other species B EVs and EV71 where VP1 lineage expansion and extinction occurred in step with defined recombination events and periodic changes in incidence.


Asunto(s)
Echovirus 6 Humano/genética , Infecciones por Echovirus/epidemiología , Infecciones por Echovirus/virología , Evolución Molecular , Recombinación Genética , Genotipo , Humanos , Epidemiología Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , España/epidemiología , Proteínas Virales/genética
16.
Int J Mol Sci ; 13(7): 8998-9013, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942748

RESUMEN

Bovine Rhinitis B Virus (BRBV) is a picornavirus responsible for mild respiratory infection of cattle. It is probably the least characterized among the aphthoviruses. BRBV is the closest relative known to Foot and Mouth Disease virus (FMDV) with a ~43% identical polyprotein sequence and as much as 67% identical sequence for the RNA dependent RNA polymerase (RdRp), which is also known as 3D polymerase (3D(pol)). In the present study we carried out phylogenetic analysis, structure based sequence alignment and prediction of three-dimensional structure of BRBV 3D(pol) using a combination of different computational tools. Model structures of BRBV 3D(pol) were verified for their stereochemical quality and accuracy. The BRBV 3D(pol) structure predicted by SWISS-MODEL exhibited highest scores in terms of stereochemical quality and accuracy, which were in the range of 2Å resolution crystal structures. The active site, nucleic acid binding site and overall structure were observed to be in agreement with the crystal structure of unliganded as well as template/primer (T/P), nucleotide tri-phosphate (NTP) and pyrophosphate (PPi) bound FMDV 3D(pol) (PDB, 1U09 and 2E9Z). The closest proximity of BRBV and FMDV 3D(pol) as compared to human rhinovirus type 16 (HRV-16) and rabbit hemorrhagic disease virus (RHDV) 3D(pols) is also substantiated by phylogeny analysis and root-mean square deviation (RMSD) between C-α traces of the polymerase structures. The absence of positively charged α-helix at C terminal, significant differences in non-covalent interactions especially salt bridges and CH-pi interactions around T/P channel of BRBV 3D(pol) compared to FMDV 3D(pol), indicate that despite a very high homology to FMDV 3D(pol), BRBV 3D(pol) may adopt a different mechanism for handling its substrates and adapting to physiological requirements. Our findings will be valuable in the design of structure-function interventions and identification of molecular targets for drug design applicable to Aphthovirus RdRps.


Asunto(s)
Filogenia , ADN Polimerasa Dirigida por ARN/química , Rhinovirus/enzimología , Proteínas Virales/química , Animales , Bovinos , Humanos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Conejos , Homología Estructural de Proteína
17.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-17400

RESUMEN

The nucleotide sequence of the VP1 (1D) and partial 3D polymerase (3Dpol) coding regions of the foot and mouth disease virus (FMDV) vaccine strain A/Iran87, a highly passaged isolate (~150 passages), was determined and aligned with previously published FMDV serotype A sequences. Overall analysis of the amino acid substitutions revealed that the partial 3Dpol coding region contained four amino acid alterations. Amino acid sequence comparison of the VP1 coding region of the field isolates revealed deletions in the highly passaged Iranian isolate (A/Iran87). The prominent G-H loop of the FMDV VP1 protein contains the conserved arginine-glycine-aspartic acid (RGD) tripeptide, which is a well-known ligand for a specific cell surface integrin. Despite losing the RGD sequence of the VP1 protein and an Asp26-->Glu substitution in a beta sheet located within a small groove of the 3Dpol protein, the virus grew in BHK 21 suspension cell cultures. Since this strain has been used as a vaccine strain, it may be inferred that the RGD deletion has no critical role in virus attachment to the cell during the initiation of infection. It is probable that this FMDV subtype can utilize other pathways for cell attachment.


Asunto(s)
Secuencia de Aminoácidos , Sustitución de Aminoácidos , Antígenos Virales/química , Proteínas de la Cápside/química , Clonación Molecular , Virus de la Fiebre Aftosa/clasificación , Regulación Viral de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Proteínas no Estructurales Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA