Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 878
Filtrar
1.
BMC Ophthalmol ; 24(1): 408, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300374

RESUMEN

BACKGROUND: Implantable Collamer Lense (ICL) presents a viable alternative to conventional refractive surgeries, but their impact on corneal microstructure remains unclear. By employing in vivo confocal microscopy (IVCM), we examined changes in stromal and endothelial cells following the insertion of V4c ICLs, with the goal of enhancing post-surgical care and outcomes. METHODS: In this longitudinal investigation, we conducted detailed preoperative assessments on 103 eyes from 53 participants. Follow-up evaluations were carried out after surgery at set intervals: one day, one week, one month, three months, six months, and twelve months. We used IVCM to analyze changes in stromal and endothelial cells. To assess differences between pre- and post-surgery variables and to investigate correlations with age, axial length (AL), and spherical equivalent refraction (SER), we applied a repeated measures mixed-effects model, with statistical significance set at P < 0.05. RESULTS: No vision-threatening complications were reported post-surgery. Significant reductions in stromal cell density (SCD) were observed postoperatively, with anterior and mid- SCD reaching their lowest values at 3 months and posterior SCD at 1 month, remaining below baseline at 12 months. endothelial cell density (ECD) and percentage of hexagonal cells (PHC) decreased initially, recovering by 12 months. Conversely, endothelial cellular area (ECA) and coefficient of variation of cell size (CoV) increased postoperatively, with the most significant change at 1 week. Endothelial deposits were detected in 49 of 101 eyes on postoperative day 1, half of them were absorbed within 3 months post-surgery. Changes in posterior SCD were negatively related to AL, while AL, SER, lens thickness showed associated with endothelium changes. CONCLUSION: Our findings elucidate the corneal microstructural changes following V4c ICL implantation, particularly the significant early reductions in stromal and endothelial cell densities. We recommend careful management of viscoelastics during surgery to minimize endothelial deposits that may harm the endothelium. Enhanced early postoperative monitoring and these surgical adjustments can lead to improved surgical and post-surgical care, ultimately supporting better patient recovery.


Asunto(s)
Endotelio Corneal , Microscopía Confocal , Miopía , Lentes Intraoculares Fáquicas , Humanos , Masculino , Femenino , Adulto , Endotelio Corneal/patología , Miopía/cirugía , Recuento de Células , Implantación de Lentes Intraoculares , Adulto Joven , Persona de Mediana Edad , Sustancia Propia/patología , Sustancia Propia/cirugía , Sustancia Propia/diagnóstico por imagen , Refracción Ocular/fisiología , Agudeza Visual/fisiología , Estudios de Seguimiento , Estudios Prospectivos
2.
Mol Med ; 30(1): 140, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251905

RESUMEN

BACKGROUND: Sepsis-induced pulmonary injury (SPI) is a common complication of sepsis with a high rate of mortality. N4-acetylcytidine (ac4C) is mediated by the ac4C "writer", N-acetyltransferase (NAT)10, to regulate the stabilization of mRNA. This study aimed to investigate the role of NAT10 in SPI and the underlying mechanism. METHODS: Twenty-three acute respiratory distress syndrome (ARDS) patients and 27 non-ARDS volunteers were recruited. A sepsis rat model was established. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of NAT10 and transferrin receptor (TFRC). Cell viability was detected by cell counting kit-8. The levels of Fe2+, glutathione, and malondialdehyde were assessed by commercial kits. Lipid reactive oxygen species production was measured by flow cytometric analysis. Western blot was used to detect ferroptosis-related protein levels. Haematoxylin & eosin staining was performed to observe the pulmonary pathological symptoms. RESULTS: The results showed that NAT10 was increased in ARDS patients and lipopolysaccharide-treated human lung microvascular endothelial cell line-5a (HULEC-5a) cells. NAT10 inhibition increased cell viability and decreased ferroptosis in HULEC-5a cells. TFRC was a downstream regulatory target of NAT10-mediated ac4C acetylation. Overexpression of TFRC decreased cell viability and promoted ferroptosis. In in vivo study, NAT10 inhibition alleviated SPI. CONCLUSION: NAT10-mediated ac4C acetylation of TFRC aggravated SPI through promoting ferroptosis.


Asunto(s)
Ferroptosis , Receptores de Transferrina , Sepsis , Sepsis/metabolismo , Sepsis/complicaciones , Sepsis/etiología , Acetilación , Animales , Humanos , Ratas , Masculino , Receptores de Transferrina/metabolismo , Receptores de Transferrina/genética , Femenino , Lesión Pulmonar/metabolismo , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Modelos Animales de Enfermedad , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Persona de Mediana Edad , Antígenos CD/metabolismo , Antígenos CD/genética , Citidina/análogos & derivados , Citidina/farmacología , Línea Celular , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/patología , Ratas Sprague-Dawley , Supervivencia Celular
3.
Chem Biol Drug Des ; 104(3): e14635, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39300672

RESUMEN

The natural lignan diphyllin has shown promising antitumor activity, although its clinical advancement has been impeded by challenges such as low solubility, poor metabolic stability, and limited potency. In response, we developed and synthesized two sets of diphyllin 4-C derivatives, comprising six ester derivatives and eight 1, 2, 3-triazole derivatives. Notably, among these derivatives, 1, 2, 3-triazole derivatives 7c and 7e demonstrated the most potent cytotoxic effects, with IC50 values ranging from 0.003 to 0.01 µM. Treatment with 0.2 µM of 7c and 7e resulted in a reduction of V-ATPase activity in HGC-27 cells to 23% and 29%, respectively.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química
4.
Biochim Biophys Acta Mol Basis Dis ; : 167526, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326465

RESUMEN

BACKGROUND: Impaired decidualization is a major cause of infertility in patients with adenomyosis (AM). However, the effect of transcription factor 21 (TCF21) on AM and the underlying mechanism of associated-impaired decidualization remain unclear. The aim of this study was to investigate the expression of TCF21 in endometrial tissues of AM patients and the specific mechanisms by which it impairs the decidualization of human endometrial stromal cells (HESCs), with a view to improving the reproductive outcome of AM infertile patients. METHODS: We compared gene expressions via transcriptomics between the control and AM-associated recurrent implantation failure (RIF) groups. qRT-PCR, western blot, and IHC were performed to confirm the expression and location of TCF21 in the endometrium. Furthermore, we confirmed that high expression of TCF21 impairs decidualization by qRT-PCR, immunofluorescence, and western blot. RNA-seq following overexpression of TCF21 in HESCs was conducted to identify TCF21-related molecular changes during in vitro decidualization. Then we performed ChIP-seq/qPCR and dual-luciferase reporter assay to explore the exact interaction between TCF21 and PDE4C. The related downstream mechanisms were further proved using IHC, qRT-PCR, western blot, and ELISA. RESULTS: According to the RNA-seq analysis, TCF21 expression was remarkably higher in the endometrium of the AM-related RIF group compared to the control group. We confirmed the same results using samples from patients with AM and controls. TCF21 overexpression in HESCs impaired decidualization through suppression of decidual markers and cytoskeleton alterations. The mechanistic analysis revealed that TCF21 inhibited intracellular cAMP levels by directly increasing PDE4C expression and suppressing FOXO1 expression. CONCLUSIONS: TCF21 compromises decidualization in patients with AM via the PDE4C/cAMP-FOXO1 axis, which offers valuable insights on the pathology of decidualization-related infertility and indicates a potential treatment to improve endometrial receptivity in AM.

5.
ACS Appl Mater Interfaces ; 16(38): 51748-51756, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39259831

RESUMEN

Textiles that can repeatedly change color in the presence of external stimuli have attracted great interest. Effectively designing to produce such functional textiles is essential, yet there remain challenges like producing stable coloration, rapid response, and reverse color changing. Here, the preparation of a magnetic field response (MFR) textile with a fast magnetic field response, brilliant structural coloration, and mechanical robustness is reported. The MFR textile is knitted by incorporating magnetic particles' ethylene glycol (EG) suspension within polydimethylsiloxane (PDMS)-based fibers. A surface modification strategy is designed to prevent EG from seeping out along the PDMS polymer chains. A PDMS fiber is encapsulated in waterborne polyurethane, and a polydopamine joint layer is used. The MFR textile demonstrates magnetic field-triggered structural colors, and the breaking strength and elongation at break of each composite fiber are improved. In addition, multishaped patterns can be printed on the MFR textile with the help of the photo etching technology, which enhances the applications of the new functional textiles.

6.
Lab Med ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303675

RESUMEN

BACKGROUND: Charcot-Marie-Tooth type 4C (CMT4C) is a slowly progressive, autosomal recessive, sensorimotor polyneuropathy characterized by demyelination and distinct clinical features, including cranial nerve involvement. CMT4C is associated with pathogenic mutations in the SH3TC2 gene. METHODS: A patient presenting with gait instability due to demyelinating polyneuropathy and refractory trigeminal neuralgia underwent comprehensive evaluation. Nerve conduction studies, magnetic resonance imaging (MRI) of the brain, cervical spine, and thoracic spine, lumbar puncture, and genetic test through next generation sequencing were performed. RESULTS: The genetic test found an Arg1109Stop mutation in the SH3TC2 gene, associated with demyelinating polyneuropathy and cranial neuropathy. Interestingly, brain MRI showed multiple, nonenhancing white matter hyperintensities. This is the first case of CMT4C associated with white matter lesions. CONCLUSION: Any patient with slowly progressive peripheral nervous system symptoms and disproportionally abnormal nerve conduction study findings should be tested for an inherited polyneuropathy and brain imaging for screening of possible central nervous system involvement should be performed. Further investigation is needed to elucidate the pathogenetic basis of CMT4C and a possible association with white matter lesions.

7.
Sci Total Environ ; 953: 176158, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39255941

RESUMEN

Per- and polyfluoroalkyl substances (PFAS), known as "forever chemicals," are synthetic chemicals which have been used since the 1940s. Given their remarkable thermostability and chemical stability, PFAS have been widely utilized in commercial products, including textiles, surfactants, food packages, nonstick coatings, and fire-fighting foams. Thus, PFAS are widely distributed worldwide and have been detected in human urine, blood, breast milk, tissues and other substances. Growing concerns over the risks of PFAS, including their toxicity and carcinogenicity, have attracted people's attention. Recent reviews have predominantly emphasized advancements in the detection, adsorption, and degradation of PFAS through their chemical structures and toxic properties; however, further examination of the literature is needed to determine the link between PFAS exposure and cancer risk. Here, we introduced different PFAS detection methods based on sensors and liquid chromatography-mass spectrometry (LC-MS). Then, we discussed epidemiological investigations on PFAS levels and cancer risks in recent years, as well as the mechanisms underlying the carcinogenesis. Finally, we proposed the "4C principles" for ongoing exploration and refinement in this field. This review highlights PFAS-cancer associations to fill knowledge gaps and provide evidence-based strategies for future research.


Asunto(s)
Carcinógenos , Fluorocarburos , Neoplasias , Neoplasias/epidemiología , Neoplasias/inducido químicamente , Humanos , Contaminantes Ambientales , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos
8.
Vaccine ; 42(26): 126312, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260056

RESUMEN

BACKGROUND: Outer membrane vesicle (OMV) meningococcal serogroup B (MenB) vaccines might be protective against gonorrhea. We evaluated the effectiveness of MenB-4C, an OMV MenB vaccine, against gonorrhea. METHODS: We identified gonococcal mono-infections, chlamydial mono-infections, and gonococcal/chlamydial co-infections among persons aged 15-30 years in the electronic health records of Kaiser Permanente Northern California during 2016-2021. We determined MenB-4C vaccination status (vaccinated [≥1 MenB-4C vaccine dose] or unvaccinated [MenB-4C vaccine naïve]) at each infection. We used log-binomial regression with generalized estimating equations to calculate adjusted prevalence ratios (APR) and 95 % confidence intervals (CI) to determine if MenB-4C vaccination was protective against gonococcal mono-infections compared to chlamydial mono-infection. We also evaluated if MenB-4C vaccination was protective against gonococcal/chlamydial co-infections. Because of concerns with small sample size of vaccinated persons, we estimated effects using a limited model (adjusting for race/ethnicity only) and an expanded model (adjusting for additional potential confounders). RESULTS: Of 68,454 persons, we identified 558 (0.8 %) MenB-4C vaccinated persons and 85,393 infections (13,000 gonococcal mono-infections, 68,008 chlamydial mono-infections, and 4385 gonococcal/chlamydial co-infections). After adjusting for race/ethnicity, MenB-4C vaccination was 23 % protective against gonococcal mono-infection compared to chlamydial mono-infection (APR = 0.77, 95 % CI = 0.64-0.99) in the limited model but not in the expanded model. CONCLUSION: MenB-4C vaccination was protective against gonococcal mono-infection, independent of race/ethnicity. This protective effect was not observed when other potential confounders were included in the analysis. Protection against gonococcal/chlamydial co-infection was not observed. Efficacy data from clinical trials are needed.

9.
Mol Neurobiol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271624

RESUMEN

The recognition of RNA N4-acetylcytidine (ac4C) modification as a significant type of gene regulation is growing; nevertheless, whether ac4C modification or the N-acetyltransferase 10 protein (NAT10, the only ac4C "writer" that is presently known) participates in thalamus hemorrhage (TH)-induced central poststroke pain (CPSP) is unknown. Here, we observed NAT10 was primarily located in the neuronal nuclei of the thalamus of mice, with Fn14 and p65. An increase of NAT10 mRNA and protein expression levels in the ipsilateral thalamus was observed from days 1 to 14 after TH. Inhibition of NAT10 by several different approaches attenuated Fn14 and p65 upregulation of TH mice, as well as tissue injury in the thalamus on the ipsilateral side, and the development and maintenance of contralateral nociceptive hypersensitivities. NAT10 overexpression increased Fn14 and p65 expression and elicited nociceptive hypersensitivities in naïve mice. Our findings suggest that ac4C modification and NAT10 participate in TH-induced CPSP by activating the NF-κB pathway through upregulating Fn14 in thalamic neurons. NAT10 could serve as a promising new target for CPSP treatment.

10.
ACS Appl Mater Interfaces ; 16(37): 49286-49292, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39235076

RESUMEN

Strain engineering is an effective strategy to improve the activity of catalysts, especially for flexible carbon-based materials. Nitrogen-coordinated single atomic metals on a carbon skeleton (M-Nx/C) are of interest in catalytic electroreduction reactions due to their high activity and atomic utilization. However, the effect of strain on the structure-activity relationship between the electrochemical activity and the electronic and geometric structures of Ni-Nx/C remains unclear. Here, we found that by applying tensile strain on the Ni-N4/C, the spin state of the single atom can be changed from a low-spin to a high-spin state. Moreover, the energy gap between the highest occupied d orbital of Ni and the lowest unoccupied molecular orbital of the adsorbed species narrowed. With an increasing strain rate, the catalytic activity of O2 and CO2 electroreduction can be improved. Especially for the 2e- O2 reduction, the implicit solvent model, constant-potential method, and microkinetic model were used to verify the positive effect of suitable stretching on the catalytic activity from thermodynamic and kinetic viewpoints. This work can reveal the relationship between strain, spin state, and the catalytic activity of Ni-Nx/C.

11.
Front Oncol ; 14: 1448890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246323

RESUMEN

Background: Rapidly developed chemoresistance to dacarbazine (DTIC) is a major obstacle in the clinical management of melanoma; however, the roles and mechanisms of epi-transcriptomic RNA modification in this process have not been investigated. Method: DTIC-resistant (DR) melanoma cells were established for bulk RNA sequencing. The expressions of mRNAs were detected using qRT-PCR, and protein levels were determined using Western blotting and immunohistochemistry. Acetylated RNAs were detected by dot blotting and immunoprecipitation sequencing (acRIP-seq). A lung metastasis mouse model of melanoma was established to evaluate the anti-melanoma effects in vivo. Results: We identified that the expression of N-acetyltransferase 10 (NAT10), a catalytic enzyme for the N 4-acetylcytidine (ac4C) modification of RNA, was significantly upregulated in the DR cells. Clinically, NAT10 expression was elevated in disease progression samples and predicted a poor outcome. Using ac4C RNA immunoprecipitation (ac4C-RIP), we found that the mRNAs of two C2H2 zinc finger transcriptional factors, DDX41 and ZNF746, were targets of NAT10-mediated ac4C modification. Gain- and loss-of-function experiments in NAT10, or in DDX41 and ZNF746, altered the chemosensitivity of melanoma accordingly, and the two target genes also negatively correlated with clinical outcomes. Finally, pharmacological inhibition of NAT10 with Remodelin sensitized melanoma cells to DTIC treatment in vitro and in a mouse xenograft model. Conclusion: Our study elucidates the previously unrecognized role of NAT10-mediated ac4C modification in the chemoresistance of melanoma and provides a rationale for developing new strategies to overcome chemoresistance in melanoma patients.

12.
Genome Med ; 16(1): 112, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272130

RESUMEN

BACKGROUND: X-linked acrogigantism (X-LAG; MIM: 300942) is a severe form of pituitary gigantism caused by chromosome Xq26.3 duplications involving GPR101. X-LAG-associated duplications disrupt the integrity of the topologically associating domain (TAD) containing GPR101 and lead to the formation of a neo-TAD that drives pituitary GPR101 misexpression and gigantism. As X-LAG is fully penetrant and heritable, duplications involving GPR101 identified on prenatal screening studies, like amniocentesis, can pose an interpretation challenge for medical geneticists and raise important concerns for patients and families. Therefore, providing robust information on the functional genomic impact of such duplications has important research and clinical value with respect to gene regulation and triplosensitivity traits. METHODS: We employed 4C/HiC-seq as a clinical tool to determine the functional impact of incidentally discovered GPR101 duplications on TAD integrity in three families. After defining duplications and breakpoints around GPR101 by clinical-grade and high-density aCGH, we constructed 4C/HiC chromatin contact maps for our study population and compared them with normal and active (X-LAG) controls. RESULTS: We showed that duplications involving GPR101 that preserved the centromeric invariant TAD boundary did not generate a pathogenic neo-TAD and that ectopic enhancers were not adopted. This allowed us to discount presumptive/suspected X-LAG diagnoses and GPR101 misexpression, obviating the need for intensive clinical follow-up. CONCLUSIONS: This study highlights the importance of TAD boundaries and chromatin interactions in determining the functional impact of copy number variants and provides proof-of-concept for using 4C/HiC-seq as a clinical tool to acquire crucial information for genetic counseling and to support clinical decision-making in cases of suspected TADopathies.


Asunto(s)
Cromatina , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/genética , Cromatina/genética , Cromatina/metabolismo , Femenino , Masculino , Duplicación de Gen , Duplicación Cromosómica , Cromosomas Humanos X/genética , Linaje
13.
Materials (Basel) ; 17(17)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39274574

RESUMEN

The modulation of electrical properties in composite materials is critical for applications requiring tailored electrical functionality, such as electromagnetic shielding and absorption. This study focuses on Ti64/B4C composites, a material combination promising enhanced electromagnetic properties. Laser direct manufacturing (LDM) was utilized to fabricate coaxial samples of Ti64 blended with TiB and TiC in various mass ratios, with sample thicknesses ranging from 0.5 mm to 3.5 mm. The electrical characterization involved assessing the dielectric and magnetic permeability, as well as impedance and reflectance, across a frequency spectrum of 2 to 18 GHz. The result reveals that TiC, when incorporated into Ti64, exhibits strong dielectric polarization and achieves a reflectivity as low as -40 dB between 7 and 14 GHz. Conversely, TiB demonstrates effective electromagnetic absorption, with reflectivity values below -10 dB in the frequency band of 8.5 to 11.5 GHz. The study also notes that a lower B4C content enhances electronic polarization and increases the dielectric coefficient, while higher contents favor ionic polarization. This shift can lead to a timing mismatch in the establishment of electron and ion polarization, resulting in a decreased dielectric coefficient. In addition, adjusting the B4C content in Ti64/B4C composites effectively modulates their electrical properties, suggesting a strategic approach to designing materials for specific electromagnetic functions.

14.
BMC Med Genomics ; 17(1): 210, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138470

RESUMEN

BACKGROUND: Prostate cancer (PCa) stands as the second most prevalent malignancy impacting male health, and the disease's evolutionary course presents formidable challenges in the context of patient treatment and prognostic management. Charged multivesicular body protein 4 C (CHMP4C) participates in the development of several cancers by regulating cell cycle functions. However, the role of CHMP4C in prostate cancer remains unclear. METHODS: In terms of bioinformatics, multiple PCa datasets were employed to scrutinize the expression of CHMP4C. Survival analysis coupled with a nomogram approach was employed to probe into the prognostic significance of CHMP4C. Gene set enrichment analysis (GSEA) was conducted to interrogate the functional implications of CHMP4C. In terms of cellular experimentation, the verification of RNA and protein expression levels was executed through the utilization of qRT-PCR and Western blotting. Upon the establishment of a cell line featuring stable CHMP4C knockdown, a battery of assays, including Cell Counting Kit-8 (CCK-8), wound healing, Transwell, and flow cytometry, were employed to discern the impact of CHMP4C on the proliferation, migration, invasion, and cell cycle function of PCa cells. RESULTS: The expression of CHMP4C exhibited upregulation in both PCa cells and tissues, and patients demonstrating elevated CHMP4C expression levels experienced a notably inferior prognosis. The nomogram, constructed using CHMP4C along with clinicopathological features, demonstrated a commendable capacity for prognostic prediction. CHMP4C knockdown significantly inhibited the proliferation, migration, and invasion of PCa cells (LNcaP and PC3). CHMP4C could impact the advancement of the PCa cell cycle, and its expression might be regulated by berberine. Divergent CHMP4C expression among PCa patients could induce alterations in immune cell infiltration and gene mutation frequency. CONCLUSIONS: Our findings suggest that CHMP4C might be a prognostic biomarker in PCa, potentially offering novel perspectives for the advancement of precision therapy for PCa.


Asunto(s)
Ciclo Celular , Proliferación Celular , Neoplasias de la Próstata , Humanos , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Regulación Neoplásica de la Expresión Génica , Nomogramas , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo
15.
Water Res ; 263: 122121, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094200

RESUMEN

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.


Asunto(s)
Cloranfenicol , Óxido Ferrosoférrico , Metano , Aguas Residuales , Aguas Residuales/química , Óxido Ferrosoférrico/química , Anaerobiosis , Metano/metabolismo , Carbono , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno
16.
Sci Rep ; 14(1): 19842, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191851

RESUMEN

Within fluid mechanics, the flow of hybrid nanofluids over a stretching surface has been extensively researched due to their influence on the flow and heat transfer properties. Expanding on this concept by introducing porous media, the current study explore the flow and heat and mass transport characteristics of hybrid nanofluid. This investigation includes the effect of magnetohydrodynamic (MHD) with chemical reaction, thermal radiation, and slip effects. The nanoparticles, copper, and alumina are combined with water for the formation of a hybrid nanofluid. Using the self-similar method for the reduction of Partial differential equations (PDEs) to the system of Ordinary differential equations (ODEs). These nonlinear equation systems are solved numerically using the bvp4c (boundary value solver) technique. The effect of the different physical non-dimensional flow parameters on different flow profiles such as velocity, temperature, concentration, skin friction, Nusselt and mass transfer rate are depicted through graphs and tables. The velocity profiles diminish with the effect of magnetic and slip parameters. The temperature and concentration slip parameters reduce the temperature and concentration profile respectively. The higher values of magnetic factor lessened the skin friction coefficient for both slip and no-slip conditions. An elevation in the thermal slip parameter reduced the boundary layer thickness and the heat transfer from the surface to the fluid. The Nusselt number amplified with the climbing values of the radiation parameter. The mass transfer rate depressed with the solutal slip parameter. Comparison is made with the published work in the literature and there is excellent agreement between them.

17.
J Adv Res ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089619

RESUMEN

INTRODUCTION: Excessive osteoclastogenesis is a key driver of inflammatory bone loss. Suppressing osteoclastogenesis has always been considered essential for the treatment of inflammatory bone loss. N-acetyltransferase 10 (NAT10) is the sole enzyme responsible for N4-acetylcytidine (ac4C) modification of mRNA, and is involved in cell development. However, its role in osteoclastogenesis and inflammatory bone loss remained elusive. OBJECTIVES: We aimed to clarify the regulatory mechanism of NAT10 and ac4C modification in osteoclastogenesis and inflammatory bone loss. METHODS: NAT10 expression and ac4C modification during osteoclastogenesis were determined by quantitative real-time PCR (qPCR), western blotting, dot blot and immunofluorescent staining, and the effect of NAT10 inhibition on osteoclast differentiation in vitro was measured by the tartrate-resistant acid phosphatase staining, podosome belts staining assay and bone resorption pit assay. Then, acRIP-qPCR and NAT10RIP-qPCR, ac4C site prediction, mRNA decay assay and luciferase reporter assay were performed to further study the underlying mechanisms. At last, mice models of inflammatory bone loss were applied to verify the therapeutic effect of NAT10 inhibition in vivo. RESULTS: NAT10 expression was upregulated during osteoclast differentiation and highly expressed in alveolar bone osteoclasts from periodontitis mice. Inhibition of NAT10 notably reduced osteoclast differentiation in vitro, as indicated by great reduction of tartrated resistant acid phosphatse positive multinuclear cells, osteoclast-specific gene expression, F-actin ring formation and bone resorption capacity. Mechanistically, NAT10 catalyzed ac4C modification of Fos (encoding AP-1 component c-Fos) mRNA and maintained its stabilization. Besides, NAT10 promoted MAPK signaling pathway and thereby activated AP-1 (c-Fos/c-Jun) transcription for osteoclastogenesis. Therapeutically, administration of Remodelin, the specific inhibitor of NAT10, remarkably impeded the ligature-induced alveolar bone loss and lipopolysaccharide-induced inflammatory calvarial osteolysis. CONCLUSIONS: Our study demonstrated that NAT10-mediated ac4C modification is an important epigenetic regulation of osteoclast differentiation and proposed a promising therapeutic target for inflammatory bone loss.

18.
Heliyon ; 10(15): e35555, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170172

RESUMEN

This study explores how machining parameters affect Surface Roughness (SR), Tool Wear Rate (TWR), and Material Removal Rate (MRR) during Electrical Discharge Machining (EDM) of a hybrid aluminum metal matrix composite (AMMC). The composite includes 6 % Silicon carbide (SiC) and 6 % Boron carbide (B4C) in an Aluminum 7075 (Al7075) matrix. A combined optimization approach was used to balance these factors, evaluating Pulse ON time, Current, Voltage, and Pulse OFF time. Response Surface Methodology (RSM) optimized single responses, while multi-response optimization employed a hybrid method combining the Entropy Weight Method (EWM), Taguchi approach, TOPSIS, and GRA. Analysis of Variance (ANOVA) assessed parameter significance, revealing substantial impacts on SR, MRR, and EWR. Based on TOPSIS and GRA, optimized parameters achieved a desirable balance: high MRR (0.4172, 0.5240 mm³/min), minimal EWR (0.0068, 0.0103 mm³/min), and acceptable SR (10.3877, 9.1924 µm) based on EWM-weighted priorities. Confirmation experiments validated a 15 % improvement in the closeness coefficient, and a 16 % improvement in the Grey relational grade, which considers combined SR, MRR, and EWR performance. Scanning Electron Microscope (SEM) analysis of surfaces machined with optimal parameters showed minimal debris, cracks, and no recast layer, indicating high surface integrity. This research enhances EDM optimization for AMMC, achieving efficiency in machining, minimizing tool wear, and meeting surface quality requirements.

19.
Materials (Basel) ; 17(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39203234

RESUMEN

The presented study investigates the effects of weight percentages of boron carbide reinforcement on the wear properties of aluminum alloy composites. Composites were fabricated via ball milling and the hot extrusion process. During the fabrication of composites, B4C content was varied (0, 5, and 10 wt.%), as well as milling time (0, 10, and 20 h). Microstructural observations with SEM microscopy showed that with an increase in milling time, the distribution of B4C particles is more homogeneous without agglomerates, and that an increase in wt.% of B4C results in a more uniform distribution with distinct grain boundaries. Taguchi and ANOVA analyses are applied in order to investigate how parameters like particle content of B4C, normal load, and milling time affect the wear properties of AA2024-based composites. The ANOVA results showed that the most influential parameters on wear loss and coefficient of friction were the content of B4C with 51.35% and the normal load with 45.54%, respectively. An artificial neural network was applied for the prediction of wear loss and the coefficient of friction. Two separate networks were developed, both having an architecture of 3-10-1 and a tansig activation function. By comparing the predicted values with the experimental data, it was demonstrated that the well-trained feed-forward-back propagation ANN model is a powerful tool for predicting the wear behavior of Al2024-B4C composites. The developed models can be used for predicting the properties of Al2024-B4C composite powders produced with different reinforcement ratios and milling times.

20.
Heliyon ; 10(15): e35148, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170322

RESUMEN

The premise of this study, utilizing content analysis and descriptive qualitative designs, posited that teachers' comprehension of 21st-century/4Cs skills' could define the caliber of educational materials in higher education institutions. The study aimed to ascertain how 21st-century skills were incorporated in teachers' term evaluations and instructional plans, and to explore teachers' understanding of these skills. From 2022 to 2023, this research was carried out at the Faculty of Education in one university in Indonesia. There were 54 documents collected, which included 27 teachers' term evaluations and 27 instructional plans. Four teachers were interviewed to collect information related to their 4Cs competencies' familiarity, opinions, and the challenges of the 4Cs competencies integration. To evaluate the collected documents, this study utilized the Career Technical Education (CTE) Career Ready Practices checklist, a 21st-Century Skills/4Cs rubric encompassing "Communication," "Creativity," "Critical Thinking," and "Collaboration." The research indicated that teachers' term evaluations and instructional plans have incorporated 4C skills in the categories of "Not yet reached competency" and "Approaching competency." The research suggests that teachers' understanding of 4Cs competencies can be initially assessed through their instructional materials, 4Cs competencies, familiarity, positive opinions, and challenges. Teachers must have familiarity with 4Cs competencies in order to provide these skills in their instructional materials/plans and develop teaching with the 4Cs competencies. A multifaceted strategy is needed for the next research, including focused professional development, collaboration among educators, institutional leaders' support, and alignment with larger educational priorities and goals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA