RESUMEN
10-years records of monthly bulk atmospheric fluxes of 7Be and 210Pb (wet + dry, n = 119 samples) at a coastal station in Cienfuegos (Cuba) between 2010 and 2019 were reported and assessed in function of their temporal variability and meteorological influence. Fluxes of 7Be and 210Pb ranged from 120 to 15617 and from 29 to 911 mBq m-2 day-1, respectively. Both radionuclides exhibited a similar seasonal trend with highest values during wet months and minimum values during dry months. The removal of 7Be and 210Pb from the atmosphere was mainly controlled by wet depositions, while dry deposition was estimated to be more important for 210Pb (29% of the total bulk deposition) than for 7Be (12%). The 210Pb/7Be ratios (average of 0.10) showed low variability during wet months with abrupt peaks in the driest months with low temperatures and the highest wind speed and pressure, which was mainly attributed to contributions from soil resuspension. The calculated total deposition velocity of aerosols derived from 7Be (average of 0.48 cm s-1) and 210Pb (average of 0.47 cm s-1) was in agreement with values reported in the literature. Multiple linear regression models for the monthly fluxes of 7Be and 210Pb based on precipitation, temperature and pressure and explaining about 60% of their variances were derived, highlighting the preponderant role of the local and regional conditions on the variability of these radionuclides. The annual fluxes of 7Be (209-1901 Bq m-2 y-1) and 210Pb (35-123 Bq m-2 y-1) were in the range of variations observed in other coastal stations worldwide, showing fluctuations affected by changes in the amount of precipitation during the wet periods. 7Be annual variability also evidenced a significant modulation with the solar activity.
Asunto(s)
Contaminantes Radiactivos del Aire , Contaminantes Atmosféricos , Monitoreo de Radiación , Contaminantes Atmosféricos/análisis , Contaminantes Radiactivos del Aire/análisis , Atmósfera , Cuba , Monitoreo del Ambiente , Plomo , Radioisótopos/análisisRESUMEN
Beryllium-7 (7Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7Be content in soil shows a marked variation throughout the year. Minimum 7Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7Be deposition was observed in rain water. A good agreement between 7Be soil content and 7Be atmospheric deposition was noticed, mainly in wet months. 7Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties.
Asunto(s)
Berilio/análisis , Monitoreo de Radiación , Radioisótopos/análisis , Suelo/química , Brasil , Lluvia , Movimientos del AguaRESUMEN
The radiometric composition of bulk deposition samples, collected monthly for one year, February 2010 until January 2011, at a site located in Cienfuegos (22° 03' N, 80° 29' W) (Cuba), are analysed in this paper. Measurement of (7)Be and (210)Pb activity concentrations were carried out in 12 bulk deposition samples. The atmospheric deposition fluxes of (7)Be and (210)Pb are in the range of 13.2-132 and 1.24-8.29 Bq m(-2), and their mean values are: 56.6 and 3.97 Bq m(-2), respectively. The time variations of the different radionuclide have been discussed in relation with meteorological factors and the mean values have been compared to those published in recent literature from other sites located at different latitudes. The annual average flux of (210)Pb and (7)Be were 47 and 700 Bq m(-2) y(-1), respectively. Observed seasonal variations of deposition data are explained in terms of different environmental features. The atmospheric deposition fluxes of (7)Be and (210)Pb were moderately well correlated with precipitation and well correlated with one another. The (210)Pb/(7)Be ratios in the monthly depositions samples varied in the range of 0.05-0.10 and showed a strong correlation with the number of rainy days.
Asunto(s)
Contaminantes Radiactivos del Aire/análisis , Berilio/análisis , Radioisótopos de Plomo/análisis , Monitoreo de Radiación , Radioisótopos/análisis , Cuba , Tiempo (Meteorología)RESUMEN
Reliable information on environmental radionuclides atmospheric entrance, and their distribution along the soil profile, is a necessary condition for using these soil and sediment tracers to investigate key environmental processes. To address this need, (7)Be content in rainwater and the wet deposition in a semiarid region at San Luis Province, Argentina, were studied. Following these researches, in the same region, we have assessed the (7)Be content along a soil profile, during 2.5 years from September 2009 to January 2012. As expected, the specific activity values in soil samples in the wet period (November-April) were higher than in the dry period (May-October). During the investigated period (2009 - beginning 2012) and for all sampled points, the maximum value of the (7)Be specific activity (Bq kg(-1)) was measured at the surface level. A typical decreasing exponential function of (7)Be areal activity (Bq m(-2)) with soil mass depth (kg m(-2)) was found and the key distribution parameters were determined for each month. The minimum value of areal activity was 51 Bq m(-2) in August, and the maximum was 438 Bq m(-2) in February. The relaxation mass depth ranges from 2.9 kg m(-2) in March to 1.3 kg m(-2) in August. (7)Be wet deposition can explain in a very significant proportion the (7)Be inventory in soil. During the period of winds in the region (September and October), the (7)Be content in soil was greater than the expected contribution from wet deposition, situation that is compatible with a higher relative contribution of dry deposition at this period of the year.