Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401309, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011809

RESUMEN

Acetaminophen, a centrally-acting old analgesic drug, is a weak inhibitor of cyclooxygenase (COX) isoforms with some selectivity toward COX-2. This compound was used in this work as a precursor to create nine acetaminophen based coumarins (ACFs). To satisfy the aim of this work, which states the synthesis of acetaminophen-based coumarins as selective COX-2 inhibitors, the ACFs were subjected to two types of investigation: in vitro and in silico. Given the former type, the ACFs capacity to block COX-1 and COX-2 was investigated in lab settings. On the other hand, the in silico investigation included docking the chemical structures of ACFs into the active sites of these enzymes, predicting their anticipated toxicities, and determining the ADME characteristics. The results of the in vitro study revealed that the ACFs demonstrated good-to-excellent inhibitory properties against the enzymes under study. Also, these ACFs exhibited a high level of COX-2 selectivity, which improved as the capacity of  aromatic substitute for withdrawing electrons was enhanced. Results of docking were comparable to the in vitro investigation in case of COX-2. On the other hand, the in silico investigations indicated that the synthesized ACFs are safer than their precursor, acetaminophen, with a high potential to consider oral-administrated candidates.

2.
Eur J Med Chem ; 276: 116647, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981337

RESUMEN

Multi-drug resistance (MDR) is a serious challenge in contemporary clinical practice and is mostly responsible for the failure of cancer medication therapies. Several experimental evidence links MDR to the overexpression of the drug efflux transporter P-gp, therefore, the discovery of novel P-glycoprotein inhibitors is required to treat or prevent MDR and to improve the absorption of chemotherapy drugs via the gastrointestinal system. In this work, we explored a series of novel pyridoquinoxaline-based derivatives designed from parental compounds, previously proved active in enhancing anticancer drugs in MDR nasopharyngeal carcinoma (KB). Among them, derivative 10d showed the most potent and selective inhibition of fluorescent dye efflux, if compared to reference compounds (MK-571, Novobiocin, Verapamil), and the highest MDR reversal activity when co-administered with the chemotherapeutic agents Vincristine and Etoposide, at non-cytotoxic concentrations. Molecular modelling predicted the two compound 10d binding mode in a ratio of 2:1 with the target protein. No cytotoxicity was observed in healthy microglia cells and off-target investigations showed the absence of CaV1.2 channel blockade. In summary, our findings indicated that 10d could potentially be a novel therapeutic coadjutant by inhibiting P-gp transport function in vitro, thereby reversing cancer multidrug resistance.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Descubrimiento de Drogas , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Quinoxalinas , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Quinoxalinas/farmacología , Quinoxalinas/química , Quinoxalinas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Estructura-Actividad , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Modelos Moleculares
3.
Pharm Res ; 41(7): 1369-1379, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918309

RESUMEN

PURPOSE: Recently, there has been rapid development in model-informed drug development, which has the potential to reduce animal experiments and accelerate drug discovery. Physiologically based pharmacokinetic (PBPK) and machine learning (ML) models are commonly used in early drug discovery to predict drug properties. However, basic PBPK models require a large number of molecule-specific inputs from in vitro experiments, which hinders the efficiency and accuracy of these models. To address this issue, this paper introduces a new computational platform that combines ML and PBPK models. The platform predicts molecule PK profiles with high accuracy and without the need for experimental data. METHODS: This study developed a whole-body PBPK model and ML models of plasma protein fraction unbound ( f up ), Caco-2 cell permeability, and total plasma clearance to predict the PK of small molecules after intravenous administration. Pharmacokinetic profiles were simulated using a "bottom-up" PBPK modeling approach with ML inputs. Additionally, 40 compounds were used to evaluate the platform's accuracy. RESULTS: Results showed that the ML-PBPK model predicted the area under the concentration-time curve (AUC) with 65.0 % accuracy within a 2-fold range, which was higher than using in vitro inputs with 47.5 % accuracy. CONCLUSION: The ML-PBPK model platform provides high accuracy in prediction and reduces the number of experiments and time required compared to traditional PBPK approaches. The platform successfully predicts human PK parameters without in vitro and in vivo experiments and can potentially guide early drug discovery and development.


Asunto(s)
Aprendizaje Automático , Modelos Biológicos , Humanos , Células CACO-2 , Simulación por Computador , Farmacocinética , Descubrimiento de Drogas/métodos , Área Bajo la Curva , Administración Intravenosa , Masculino , Preparaciones Farmacéuticas/metabolismo , Proteínas Sanguíneas/metabolismo
4.
Med Chem ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38840401

RESUMEN

INTRODUCTION: Drug resistance to existing antimicrobial drugs has become a serious threat to human health, which highlights the need to develop new antimicrobial agents. METHOD: In this study, a new set of 3-hydroxypyridine-4-one derivatives (6a-j) was synthesized, and the antimicrobial effects of these derivatives were evaluated against a variety of microorganisms using the microdilution method. The antimicrobial evaluation indicated that compound 6c, with an electron-donating group -OCH3 at the meta position of the phenyl ring, was the most active compound against S. aureus and E. coli species with an MIC value of 32 µg/mL. Compound 6c was more potent than ampicillin as a reference drug. RESULT: The in vitro antifungal results showed that the studied derivatives had moderate effects (MIC = 128-512 µg/mL) against C. albicans and A. niger species. The molecular modeling studies revealed the possible mechanism and suitable interactions of these derivatives with the target protein. CONCLUSION: The obtained biological results offer valuable insights into the design of more effective antimicrobial agents.

5.
Comput Biol Chem ; 111: 108097, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38772048

RESUMEN

A new series of 2H-chromene-based sulfonamide derivatives 3-12 has been synthesized and characterized using different spectroscopic techniques. The synthesized 2H-chromenes were synthesized by reacting activated methylene with 5-(piperidin-1-ylsulfonyl)salicylaldehyde through one-step condensation followed by intramolecular cyclization. Virtual screening of the designed molecules on α-glucosidase enzymes (PDB: 3W37 and 3A4A) exhibited good binding affinity suggesting that these derivatives may be potential α-glucosidase inhibitors. In-vitro α-glucosidase activity was conducted firstly at 100 µg/mL, and the results demonstrated good inhibitory potency with values ranging from 90.6% to 96.3% compared to IP = 95.8% for Acarbose. Furthermore, the IC50 values were determined, and the designed derivatives exhibited inhibitory potency less than 11 µg/mL. Surprisingly, two chromene derivatives 6 and 10 showed the highest potency with IC50 values of 0.975 ± 0.04 and 0.584 ± 0.02 µg/mL, respectively, compared to Acarbose (IC50 = 0.805 ± 0.03 µg/mL). Moreover, our work was extended to evaluate the in-vitro α-amylase and PPAR-γ activity as additional targets for diabetic activity. The results exhibited moderate activity on α-amylase and potency as PPAR-γ agonist making it a multiplet antidiabetic target. The most active 2H-chromenes 6 and 10 exhibited significant activity to PPAR-γ with IC50 values of 3.453 ± 0.14 and 4.653 ± 0.04 µg/mL compared to Pioglitazone (IC50 = 4.884±0.29 µg/mL) indicating that these derivatives improve insulin sensitivity by stimulating the production of small insulin-sensitive adipocytes. In-silico ADME profile analysis indicated compliance with Lipinski's and Veber's rules with excellent oral bioavailability properties. Finally, the docking simulation was conducted to explain the expected binding mode and binding affinity.


Asunto(s)
Benzopiranos , Diabetes Mellitus Tipo 2 , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , PPAR gamma , alfa-Amilasas , alfa-Glucosidasas , PPAR gamma/metabolismo , PPAR gamma/antagonistas & inhibidores , Benzopiranos/química , Benzopiranos/farmacología , Benzopiranos/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , alfa-Glucosidasas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Humanos , Relación Estructura-Actividad , Estructura Molecular , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga
6.
Pharmaceuticals (Basel) ; 17(5)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38794226

RESUMEN

Recently, there has been a surge towards searching for primitive treatment strategies to discover novel therapeutic approaches against multi-drug-resistant pathogens. Endophytes are considered unexplored yet perpetual sources of several secondary metabolites with therapeutic significance. This study aims to isolate and identify the endophytic fungi from Annona squamosa L. fruit peels using morphological, microscopical, and transcribed spacer (ITS-rDNA) sequence analysis; extract the fungus's secondary metabolites by ethyl acetate; investigate the chemical profile using UPLC/MS; and evaluate the potential antibacterial, antibiofilm, and antiviral activities. An endophytic fungus was isolated and identified as Aspergillus flavus L. from the fruit peels. The UPLC/MS revealed seven compounds with various chemical classes. The antimicrobial activity of the fungal ethyl acetate extract (FEA) was investigated against different Gram-positive and Gram-negative standard strains, in addition to resistant clinical isolates using the agar diffusion method. The CPE-inhibition assay was used to identify the potential antiviral activity of the crude fungal extract against low pathogenic human coronavirus (HCoV 229E). Selective Gram-positive antibacterial and antibiofilm activities were evident, demonstrating pronounced efficacy against both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). However, the extract exhibited very weak activity against Gram-negative bacterial strains. The ethyl acetate extract of Aspergillus flavus L exhibited an interesting antiviral activity with a half maximal inhibitory concentration (IC50) value of 27.2 µg/mL against HCoV 229E. Furthermore, in silico virtual molecular docking-coupled dynamics simulation highlighted the promising affinity of the identified metabolite, orienting towards three MRSA biotargets and HCoV 229E main protease as compared to reported reference inhibitors/substrates. Finally, ADME analysis was conducted to evaluate the potential oral bioavailability of the identified metabolites.

7.
Mar Drugs ; 22(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667790

RESUMEN

In this study, Antarctic Latrunculia sponge-derived discorhabdin G was considered a hit for developing potential lead compounds acting as cholinesterase inhibitors. The hypothesis on the pharmacophore moiety suggested through molecular docking allowed us to simplify the structure of the metabolite. ADME prediction and drug-likeness consideration provided valuable support in selecting 5-methyl-2H-benzo[h]imidazo[1,5,4-de]quinoxalin-7(3H)-one as a candidate molecule. It was synthesized in a four-step sequence starting from 2,3-dichloronaphthalene-1,4-dione and evaluated as an inhibitor of electric eel acetylcholinesterase (eeAChE), human recombinant AChE (hAChE), and horse serum butyrylcholinesterase (BChE), together with other analogs obtained by the same synthesis. The candidate molecule showed a slightly lower inhibitory potential against eeAChE but better inhibitory activity against hAChE than discorhabdin G, with a higher selectivity for AChEs than for BChE. It acted as a reversible competitive inhibitor, as previously observed for the natural alkaloid. The findings from the in vitro assay were relatively consistent with the data available from the AutoDock Vina and Protein-Ligand ANTSystem (PLANTS) calculations.


Asunto(s)
Acetilcolinesterasa , Alcaloides , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Electrophorus , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Animales , Acetilcolinesterasa/metabolismo , Alcaloides/farmacología , Alcaloides/química , Butirilcolinesterasa/metabolismo , Humanos , Poríferos/química , Relación Estructura-Actividad , Caballos
8.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396753

RESUMEN

Recently, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine has been synthesized, characterized, and evaluated for its antibacterial activity against Enterococcus faecalis in combination with antineoplastic activity against gastric adenocarcinoma. In this study, new 5-iminomethylpyrimidine compounds were synthesized which differ in the substituent(s) of the aromatic ring attached to the imine group. The structures of newly obtained pyrimidine Schiff bases were established by spectroscopy techniques (ESI-MS, FTIR and 1H NMR). To extend the current knowledge about the features responsible for the biological activity of the new 5-iminomethylpyrimidine derivatives, low-temperature single-crystal X-ray analyses were carried out. For all studied crystals, intramolecular N-H∙∙∙N hydrogen bonds and intermolecular C-H∙∙∙F interactions were observed and seemed to play an essential role in the formation of the structures. Simultaneously, their biological properties based on their cytotoxic features were compared with the activities of the Schiff base (III) published previously. Moreover, computational investigations, such as ADME prediction analysis and molecular docking, were also performed on the most active new Schiff base (compound 4b). These results were compared with the highest active compound III.


Asunto(s)
Antibacterianos , Bases de Schiff , Simulación del Acoplamiento Molecular , Bases de Schiff/farmacología , Bases de Schiff/química , Espectroscopía de Resonancia Magnética , Antibacterianos/farmacología , Pirimidinas/farmacología
9.
Mol Pharm ; 21(3): 1192-1203, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38285644

RESUMEN

Predicting human clearance with high accuracy from in silico-derived parameters alone is highly desirable, as it is fast, saves in vitro resources, and is animal-sparing. We derived random forest (RF) models from 1340 compounds with human intravenous pharmacokinetic (PK) data, the largest data set publicly available today. To assess the general applicability of the RF models, we systematically removed structural-therapeutic class analogues and other compounds with structural similarity from the training sets. For a quasi-prospective test set of 343 compounds, we show that RF models devoid of structurally similar compounds in the training set predict human clearance with a geometric mean fold error (GMFE) of 3.3. While the observed GMFE illustrates how difficult it is to generate a useful model that is broadly applicable, we posit that our RF models yield a more realistic assessment of how well human clearance can be predicted prospectively. We deployed the conformal prediction formalism to assess the model applicability and to determine the prediction confidence intervals for each prediction. We observed that clearance can be predicted better for renally cleared compounds than for other clearance mechanisms. We show that applying a classification model for predicting renal clearance identifies a subset of compounds for which clearance can be predicted with higher accuracy, yielding a GMFE of 2.3. In addition, our in silico RF human clearance models compared well to models derived from scaling human hepatocytes or preclinical in vivo data.


Asunto(s)
Hepatocitos , Modelos Biológicos , Animales , Humanos , Tasa de Depuración Metabólica , Estudios Prospectivos , Simulación por Computador , Administración Intravenosa
10.
Med Chem ; 20(2): 153-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37957860

RESUMEN

INTRODUCTION: Within the scope of the project, this study aimed to find novel inhibitors by combining computational methods. In order to design inhibitors, it was aimed to produce molecules similar to the RdRp inhibitor drug Favipiravir by using the deep learning method. METHODS: For this purpose, a Trained Neural Network (TNN) was used to produce 75 molecules similar to Favipiravir by using Simplified Molecular Input Line Entry System (SMILES) representations. The binding properties of molecules to Viral RNA-dependent RNA polymerase (RdRp) were studied by using molecular docking studies. To confirm the accuracy of this method, compounds were also tested against 3CL protease (3CLpro), which is another important enzyme for the progression of SARS-CoV-2. Compounds having better binding energies and RMSD values than favipiravir were searched with similarity analysis on the ChEMBL drug database in order to find similar structures with RdRp and 3CLpro inhibitory activities. RESULTS: A similarity search found new 200 potential RdRp and 3CLpro inhibitors structurally similar to produced molecules, and these compounds were again evaluated for their receptor interactions with molecular docking studies. Compounds showed better interaction with RdRp protease than 3CLpro. This result presented that artificial intelligence correctly produced structures similar to favipiravir that act more specifically as RdRp inhibitors. In addition, Lipinski's rules were applied to the molecules that showed the best interaction with RdRp, and 7 compounds were determined to be potential drug candidates. Among these compounds, a Molecular Dynamic simulation study was applied for ChEMBL ID:1193133 to better understand the existence and duration of the compound in the receptor site. CONCLUSION: The results confirmed that the ChEMBL ID:1193133 compound showed good Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), hydrogen bonding, and remaining time in the active site; therefore, it was considered that it could be active against the virus. This compound was also tested for antiviral activity, and it was determined that it did not delay viral infection, although it was cytotoxic between 5mg/mL-1.25mg/mL concentrations. However, if other compounds could be tested, it might provide a chance to obtain activity, and compounds should also be tested against the enzymes as well as the other types of viruses.


Asunto(s)
Amidas , Inteligencia Artificial , COVID-19 , Pirazinas , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Aprendizaje Automático , Péptido Hidrolasas , Simulación de Dinámica Molecular , ARN Polimerasa Dependiente del ARN , Antivirales/farmacología , Inhibidores de Proteasas/farmacología
11.
Bioorg Chem ; 143: 107008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38091720

RESUMEN

A series of 19 novel α-aminophosphonate-tetrahydroisoquinoline hybrids were synthesized through a cross dehydrogenative coupling reaction between N-aryl-tetrahydroisoquinolines and dialkylphosphites, using tert-butyl hydroperoxide as oxidazing agent. This simple procedure provided products with high atom economy and moderate to high yields. In vitro cholinesterase inhibitory activity of these compounds was evaluated. All the synthesized compounds showed good to excellent selective inhibition against butyrylcholinesterase. Compound 3bc was found to be the most active derivative with an IC50 of 9 nM. Molecular modelling studies suggested that the inhibitor is located in the peripheral anionic site (PAS) of the enzyme and interacts with some residue of the catalytic anionic site. Kinetic studies revealed that 3bc acts as a non-competitive inhibitor. Predicted ADME showed good pharmacokinetics and drug-likeness properties for most hybrids. Each newly synthesized compound was characterized by IR, 1H NMR, 13C NMR, 31P NMR spectral studies and also HRMS. The results of this study suggest that α-aminophosphonate-tetrahydroisoquinoline hybrids can be promising lead compounds in the discovery of new and improved drugs for the treatment of Alzheimer's disease and related neurodegenerative disorders.


Asunto(s)
Enfermedad de Alzheimer , Tetrahidroisoquinolinas , Humanos , Inhibidores de la Colinesterasa/química , Butirilcolinesterasa/metabolismo , Cinética , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Tetrahidroisoquinolinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico
12.
Front Microbiol ; 14: 1277533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098658

RESUMEN

Curcumin, an important natural component of turmeric, has been known for a long time for its antimicrobial properties. This study aimed to investigate the anti-biofilm action of the niosome-encapsulated curcumin and explore the involved anti-biofilm mechanism. In silico investigations of ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) were first performed to predict the suitability of curcumin for pharmaceutical application. Curcumin showed low toxicity but at the same time, low solubility and low stability, which, in turn, might reduce its antimicrobial activity. To overcome these intrinsic limitations, curcumin was encapsulated using a biocompatible niosome system, and an encapsulation efficiency of 97% was achieved. The synthesized curcumin-containing niosomes had a spherical morphology with an average diameter of 178 nm. The niosomal curcumin was capable of reducing multi-drug resistant (MDR) Staphylococcus aureus biofilm 2-4-fold compared with the free curcumin. The encapsulated curcumin also demonstrated no significant cytotoxicity on the human foreskin fibroblasts. To understand the interaction between curcumin and S. aureus biofilm, several biofilm-related genes were analyzed for their expression. N-acetylglucosaminyl transferase (IcaD), a protein involved in the production of polysaccharide intercellular adhesion and known to play a function in biofilm development, was found to be downregulated by niosomal curcumin and showed high binding affinity (-8.3 kcal/mol) with curcumin based on molecular docking analysis. Our study suggests that the niosome-encapsulated curcumin is a promising approach for the treatment of MDR S. aureus biofilm and can be extended to biofilms caused by other pathogens.

13.
J Biomol Struct Dyn ; : 1-18, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37753798

RESUMEN

Parkinson's disease is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain. Current treatments provide limited symptomatic relief without halting disease progression. A multi-targeting approach has shown potential benefits in treating neurodegenerative diseases. In this study, we employed in silico approaches to explore the COCONUT natural products database and identify novel drug candidates with multi-target potential against relevant Parkinson's disease targets. QSAR models were developed to screen for potential bioactive molecules, followed by a hybrid virtual screening approach involving pharmacophore modeling and molecular docking against MAO-B, AA2AR, and NMDAR. ADME evaluation was performed to assess drug-like properties. Our findings revealed 22 candidates that exhibited the desired pharmacophoric features. Particularly, two compounds: CNP0121426 and CNP0242698 exhibited remarkable binding affinities, with energies lower than -10 kcal/mol and promising interaction profiles with the chosen targets. Furthermore, all the ligands displayed desirable pharmacokinetic properties for brain-targeted drugs. Lastly, molecular dynamics simulations were conducted on the lead candidates, belonging to the dihydrochalcone and curcuminoid class, to evaluate their stability over a 100 ns timeframe and compare their dynamics with reference complexes. Our findings revealed the curcuminoid CNP0242698 to have an overall better stability with the three targets compared to the dihydrochalcone, despite the high ligand RMSD, the curcuminoid CNP0242698 showed better protein stability, implying ligand exploration of different orientations. Similarly, AA2AR exhibited higher stability with CNP0242698 compared to the reference complex, despite the high initial ligand RMSD due to the bulkier active site. In NMDAR, CNP0242698 displayed good stability and less fluctuations implying a more restricted conformation within the smaller active site of NMDAR. These results may serve as lead compounds for the development and optimization of natural products as multi-target disease-modifying natural remedies for Parkinson's disease patients. However, experimental assays remain necessary to validate these findings.Communicated by Ramaswamy H. Sarma.

14.
Curr Protein Pept Sci ; 24(7): 589-609, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448368

RESUMEN

AIMS: The present work considers the Sulphate import ABC transporter protein (cysA) as a potential drug target for the identification of inhibitors for the protein. BACKGROUND: The ABC (ATP binding cassette) transporters play a crucial role in the survival and virulence of Mycobacterium tuberculosis by the acquisition of micronutrients from host tissue. OBJECTIVES: The 3D structural features of the cysA protein are built. Molecular scaffolds are identified by implementing active site identification, ADME properties, Virtual Screening, and a few other computational techniques. METHODS: The theoretical model of cysA is predicted using homology modeling protocols, and the structure is validated by various validation methods. The prediction of partial dimer formation through protein-protein docking methods gave insight into the conformational changes taking place in the cysA protein. The natural substrate ATP is docked with cysA protein that confirms the ATP binding site. To find the drug-like compounds, virtual screening studies were carried out around the active site by several ligand databases. RESULTS: The findings demonstrate the significance of residues SER41, GLY42, ARG50, GLN85, HIS86, LYS91, ARG142, and ASP161 in drug-target interactions. The docking studies of existing TB drugs against cysA were also performed. The result analysis shows that none of the existing drugs inhibits the ATP active site, which confirms cysA as a promising drug target. Using in-silico methods, the ADME parameters of a few chosen ligand molecules are predicted and contrasted with the ADME characteristics of the available TB medications. CONCLUSION: The results revealed the values of ADME parameters of selected ligand molecules are more permissible than existing TB drugs, which emphasizes the drug-like activity of ligand molecules by inhibition of cysA proteins. The structural data, active site information, and selected ligand molecules help in the identification of new therapeutic scaffolds for Tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Ligandos , Simulación de Dinámica Molecular , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Azufre/metabolismo , Adenosina Trifosfato/metabolismo , Simulación del Acoplamiento Molecular
15.
Chem Biodivers ; 20(8): e202300942, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37485637

RESUMEN

Glioma is the most common brain tumor and its treatment options are limited. Abietic acid and dehydroabietic acid are tricyclic diterpenoid oxygen compounds with strong lip solubility and anti-glioma activity. In this study, novel rosin diterpenoid derivatives were designed and synthesized using abietic acid and dehydrogenated abietic acid as lead compounds and their activities against T98G, U87MG, and U251 cells were evaluated by CCK-8 methods. The in vivo activity of compounds with stronger activity in vitro was preliminarily studied through the Zebrafish model. The results showed that the IC50 values of B6, B8, B10, and B12 were 11.47 to 210.6 µM, which were exhibited higher antiproliferative potency against T98G, U87MG, and U251. The scratch experiment showed that B12 inhibited the migration of T98G in a time-dependent and concentration-dependent manner. The results of in vivo activity further explained that B12 could inhibit the proliferation of the T98G. The pKa values of B6, B8, B10, and B12 were 7.17 to 7.35, which were within the ideal range of glioma drugs. The ADME predictions indicated that these derivatives could pass through the blood-brain barrier. In addition, molecular docking primarily explained interaction between compounds and protein. These results suggested that B12 should be a promising candidate that merits further attention in the development of anti-glioma drugs.


Asunto(s)
Antineoplásicos , Diterpenos , Glioma , Animales , Simulación del Acoplamiento Molecular , Pez Cebra , Glioma/tratamiento farmacológico , Glioma/metabolismo , Diterpenos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular , Relación Estructura-Actividad
16.
Eur J Med Chem ; 257: 115508, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37267753

RESUMEN

Chagas disease is a deadly and centenary neglected disease that is recently surging as a potential global threat. Approximately 30% of infected individuals develop chronic Chagas cardiomyopathy and current treatment with the reference benznidazole (BZN) is ineffective for this stage. We presently report the structural planning, synthesis, characterization, molecular docking prediction, cytotoxicity, in vitro bioactivity and mechanistic studies on the anti-T. cruzi activity of a series of 16 novel 1,3-thiazoles (2-17) derived from thiosemicarbazones (1a, 1b) in a two-step and reproducible Hantzsch-based synthesis approach. The anti-T. cruzi activity was evaluated in vitro against the epimastigote, amastigote and trypomastigote forms of the parasite. In the bioactivity assays, all thiazoles were more potent than BZN against epimastigotes. We found that the compounds presented an overall increased anti-tripomastigote selectivity (Cpd 8 was 24-fold more selective) than BZN, and they mostly presented anti-amastigote activity at very low doses (from 3.65 µM, cpd 15). Mechanistic studies on cell death suggested that the series of 1,3-thiazole compounds herein reported cause parasite cell death through apoptosis, but without compromising the mitochondrial membrane potential. In silico prediction of physicochemical properties and pharmacokinetic parameters showed promising drug-like results, being all the reported compounds in compliance with Lipinski and Veber rules. In summary, our work contributes towards a more rational design of potent and selective antitripanosomal drugs, using affordable methodology to yield industrially viable drug candidates.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiazoles/química , Tripanocidas/química , Diseño de Fármacos , Enfermedad de Chagas/tratamiento farmacológico
17.
Molecules ; 28(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110781

RESUMEN

Crescentia cujete is widely known as a medical plant with broad indigenous ethnomedicinal uses, including anti-inflammatory, and antioxidant. Despite being used for remedies and ethnomedicinal purposes, the benefits obtained from C. cujete still need to be fully utilized. The underwhelming studies on its pharmacological potential, bioactive compounds, and mechanism of action keep the pharmacological and new drug discovery progress of this plant slow. This study focuses on the incorporation of in silico analyses such as ADME prediction and molecular docking simulations on the bioactive compounds identified in the plant to assess their potential for antioxidant and anti-inflammatory applications. A comparison of the ADME properties and molecular docking scores showed that naringenin, pinocembrin, and eriodictyol had the most potential to act as inhibitors of the target proteins involved in inflammation and oxidation pathways against the positive controls.


Asunto(s)
Antiinflamatorios , Antioxidantes , Humanos , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Oxidación-Reducción , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología
18.
Mar Drugs ; 21(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36976235

RESUMEN

The marine polyarsenical metabolite arsenicin A is the landmark of a series of natural and synthetic molecules characterized by an adamantane-like tetraarsenic cage. Arsenicin A and related polyarsenicals have been evaluated for their antitumor effects in vitro and have been proven more potent than the FDA-approved arsenic trioxide. In this context, we have expanded the chemical space of polyarsenicals related to arsenicin A by synthesizing dialkyl and dimethyl thio-analogs, the latter characterized with the support of simulated NMR spectra. In addition, the new natural arsenicin D, the scarcity of which in the Echinochalina bargibanti extract had previously limited its full structural characterization, has been identified by synthesis. The dialkyl analogs, which present the adamantane-like arsenicin A cage substituted with either two methyl, ethyl, or propyl chains, were efficiently and selectively produced and evaluated for their activity on glioblastoma stem cells (GSCs), a promising therapeutic target in glioblastoma treatment. These compounds inhibited the growth of nine GSC lines more potently than arsenic trioxide, with GI50 values in the submicromolar range, both under normoxic and hypoxic conditions, and presented high selectivity toward non-tumor cell lines. The diethyl and dipropyl analogs, which present favorable physical-chemical and ADME parameters, had the most promising results.


Asunto(s)
Adamantano , Neoplasias Encefálicas , Glioblastoma , Humanos , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Células Madre , Adamantano/uso terapéutico , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico
19.
Nat Prod Res ; 37(8): 1401-1405, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34847785

RESUMEN

Artemisia argyi is a widely distributed and inexpensive plant resource, and study on its chemical compositions and biological activities will provide an important basis for its food applications and pharmaceutical developments. In this study, fourteen known guaiane-type sesquiterpenes (1-14), four known eudesmane-type sesquiterpenes (15-18), two known germacranolide-type sesquiterpenes (19, 20), and eight other types of terpenoids (20-28) were isolated from the leaves of A. argyi by polyamide and ODS CC and HPLC. The structures of all compounds are determined by 1 D NMR (1H-NMR、13C-NMR) and literature comparison. Among them, compounds 1 and 8 were isolated from Chinese folk medicine A. argyi for the first time. Besides, the LPS-induced RAW264.7 cell model has been evaluated the anti-inflammatory activities in vitro by the Griess reagent. The results indicated that the guaianolide sesquiterpenoids obtained from A. argyi have an excellent ability to inhibit NO production, especially Argyin A, a guaianolide sesquiterpenoid with isovaleryloxy substitution.


Asunto(s)
Artemisia , Sesquiterpenos , Animales , Ratones , Artemisia/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Células RAW 264.7
20.
Molecules ; 27(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35889513

RESUMEN

As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics.


Asunto(s)
Neoplasias de la Mama , Curcumina , Nanopartículas , Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Femenino , Ácido Fólico/metabolismo , Humanos , Liposomas/uso terapéutico , Polietilenglicoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA