Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Hepatobiliary Pancreat Dis Int ; 23(1): 43-51, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36966125

RESUMEN

BACKGROUND: Acute liver failure (ALF) is an unpredictable and life-threatening critical illness. The pathological characteristic of ALF is massive necrosis of hepatocytes and lots of inflammatory cells infiltration which may lead to multiple organ failure. METHODS: Animals were divided into 3 groups, normal, thioacetamide (TAA, ALF model) and TAA + AGK2. Cultured L02 cells were divided into 5 groups, normal, TAA, TAA + mitofusin 2 (MFN2)-siRNA, TAA + AGK2, and TAA + AGK2 + MFN2-siRNA groups. The liver histology was evaluated with hematoxylin and eosin staining, inositol-requiring enzyme 1 (IRE1), activating transcription factor 6ß (ATF6ß), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylated-PERK (p-PERK). C/EBP homologous protein (CHOP), reactive oxygen species (ROS), MFN2 and glutathione peroxidase 4 (GPX4) were measured with Western blotting, and cell viability and liver chemistry were also measured. Mitochondria-associated endoplasmic reticulum membranes (MAMs) were measured by immunofluorescence. RESULTS: The liver tissue in the ALF group had massive inflammatory cell infiltration and hepatocytes necrosis, which were reduced by AGK2 pre-treatment. In comparison to the normal group, apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ in the TAA-induced ALF model group were significantly increased, which were decreased by AGK2 pre-treatment. The levels of MFN2 and GPX4 were decreased in TAA-induced mice compared with the normal group, which were enhanced by AGK2 pre-treatment. Compared with the TAA-induced L02 cell, apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ were further increased and levels of MFN2 and GPX4 were decreased in the MFN2-siRNA group. AGK2 pre-treatment decreased the apoptosis rate and levels of IRE1, ATF6ß, p-PERK, CHOP, ROS and Fe2+ and enhanced the protein expression of MFN2 and GPX4 in MFN2-siRNA treated L02 cell. Immunofluorescence observation showed that level of MAMs was promoted in the AGK2 pre-treatment group when compared with the TAA-induced group in both mice and L02 cells. CONCLUSIONS: The data suggested that AGK2 pre-treatment had hepatoprotective role in TAA-induced ALF via upregulating the expression of MFN2 and then inhibiting PERK and ferroptosis pathway in ALF.


Asunto(s)
Ferroptosis , Fallo Hepático Agudo , Ratones , Animales , Tioacetamida/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/prevención & control , Transducción de Señal , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/efectos adversos , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis , Necrosis , ARN Interferente Pequeño/efectos adversos , Estrés del Retículo Endoplásmico/genética
2.
Journal of Chinese Physician ; (12): 196-201, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-992282

RESUMEN

Objective:To explore the protective effect of AGK2, a selective inhibitor of sirtuin 2 (SIRT2), on the mitochondria of L02 hepatocytes induced by thioacetamide (TAA) and its related mechanism.Methods:Human-derived hepatocyte line L02 cells were cultured in vitro. Different concentrations of SIRT2 inhibitor AGK2 were used as intervention drugs. Cell counting kit-8 (CCK8) was used to detect the effects of different concentrations of AGK2 on the activity of L02 cells, and the appropriate concentration was selected as the AGK2 intervention group. The normal group was not given any drug intervention. The model group was given 90 mmol/L TAA for modeling. Low, medium and high dose AGK2 groups were added with 1, 2 and 4 μmol/L AGK2, respectively 2 h before modeling. CCK8 was used to detect cell activity in each group. Morphological changes of cells were observed under inverted light microscope. The relative protein expression levels of isocitrate dehydrogenase (IDH1), malate dehydrogenase (MDH1), SIRT2 and fission protein 1 homologue (FIS1) were detected by Western blot. The expression of SIRT2 in cells of each group was observed by confocal laser scanning microscope. The mitochondrial membrane potential of cells in each group was observed under a fluorescence microscope. Results:When AGK2 concentration was 1, 2 and 4 μmol/L, the survival rate of cells were 98.05%, 95.76% and 91.65%, respectively, with no statistical significance compared with normal group (all P>0.05). When AGK2 concentration was 8, 16, 32, 64, 128 μmol/L, the cell survival rate was significantly decreased compared with normal group (all P<0.05). Compared with the model group, the L02 cells in low, medium and high AGK2 groups had better activity and adherence, and the floating cells were significantly reduced. The higher the concentration of AGK2, the better the cell activity and adherence, and the less floating cells. Compared with the model group, the red fluorescence of L02 cells in AGK2 group was enhanced, while the green fluorescence was weakened. The higher the AGK2 concentration was, the stronger the red fluorescence was, and the weaker the green fluorescence was. Compared with the model group, the fluorescence of SIRT2 in L02 cells of low, medium and high AGK2 groups was weakened, and the higher the concentration of AGK2, the weaker the fluorescence of SIRT2. The protein expressions of IDH1 and MDH1 in L02 cells of low, medium and high AGK2 groups were significantly higher than those of model group (all P<0.05), and were positively correlated with the concentration of AGK2 ( r=0.818, P<0.05; r=0.960, P<0.05); the protein expressions of SIRT2 and FIS1 were significantly lower than those of the model group (all P<0.05), and were negatively correlated with the concentration of AGK2 ( r=-0.992, P<0.05; r=-0.998, P<0.05). Conclusions:AGK2 can reduce the mitochondrial membrane potential stimulated by TAA in L02 cells, increase the protein expression of IDH1 and MDH1, and inhibit the protein expression of SIRT2 and FIS1 in L02 cells in a dose-dependent manner.

3.
Plant Dis ; 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36265156

RESUMEN

Dangshen (Codonopsis pilosula) is a well-known medicinal and food homologous plant in China, which is widely used as a tonic agent and has good immunomodulatory effects (Bai et al. 2020; Luan et al. 2021). To retain the best medicinal properties, growers imitated the original ecological planting method for cultivating C. pilosula in hillside fields in Wutai county, Shanxi province, China. In July and August 2021 and 2022, stem canker disease was observed in C. pilosula. The basal part of the stems showed slightly sunken brown lesions, and the disease incidence was up to 20% in the investigated fields (6.67 ha). To identify the causal agents of stem canker, 12 small pieces (approximately 5 mm long) from 12 diseased samples (one piece per sample) were cut from the border of the lesions, surface-sterilized (70% ethanol for 30 s, 0.5% NaClO for 3 min), washed three times with sterile water, and then incubated on water agar (WA) at 25 °C for 24 h. Isolates with right-angle branching, a septum near the branch, and a slight constriction at the branch base were selected, and their hyphal tips were transferred onto potato dextrose agar (PDA) plates. After incubation at 25 °C, 12 Rhizoctonia-like isolates (Dcp-19 to Dcp-30) with white colonies were obtained. White monilioid cells in aerial mycelia formed as they aged but did not produce sclerotia. Based on nuclear fluorescence staining with 1 µg·mL-1 4'-6-diamidino-2-phenylindole as described by Ahvenniemi et al. (2009), there were two nuclei per hyphal cell for all the 12 isolates. Moreover, the sequences of internal transcribed spacer region of ribosomal DNA (rDNA-ITS) of all the 12 isolates were amplified using the primers ITS1/ITS4 (White et al. 1990). For identical sequences, only the rDNA-ITS sequence (674 bp) of Dcp-19 has been deposited in GenBank (accession no. ON004932) and BLASTn analyses showed 100% homology with Rhizoctonia AG-K (MF070696). Maximum likelihood phylogenetic analysis further confirmed the identification. Healthy C. pilosula plants grown for two years in hillside fields were transplanted into sterile soil for pathogenicity testing. And the 12 isolates were all done in this test. Sterilized wheat seeds were placed on a 2-day-old colony of the isolate and incubated for 7 days. One fungus-infested seed was placed at the base of the stem and covered with sterilized soil. Control plants were inoculated with sterilized wheat seeds. Tests were performed on three plants for each isolate. The experiment was repeated twice. All the plants were cultivated at 22 °C and 50% relative humidity. After three weeks, the basal stems of the control plants were still healthy and did not have lesions, but the treated plants exhibited sunken brown canker lesions. The mean disease incidence of all the 12 isolates was 58.33%. The AG-K isolates re-isolated from the lesions of treated plants were confirmed by the morphological and molecular characteristics mentioned above, fulfilling Koch's postulates. To our knowledge, this is the first report of stem canker on C. pilosula caused by binucleate Rhizoctonia AG-K in China.

4.
Ital J Pediatr ; 48(1): 180, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253788

RESUMEN

BACKGROUND: Sengers syndrome is characterized by congenital cataract, hypertrophic cardiomyopathy, mitochondrial myopathy, and lactic acidosis associated with mutations in AGK gene. Clinical course ranges from a severe fatal neonatal form, to a more benign form allowing survival into adulthood, to an isolated form of congenital cataract. Thus far few reported cases have survived the second decade at their latest examination, and no natural history data are available for the disease. CASE PRESENTATION: Here we provide a 20-year follow-up in two siblings with a benign form of Sengers syndrome, expanding the phenotypical spectrum of the disease by reporting a condition of ovarian agenesis. CONCLUSION: To our knowledge, this report provides the first longitudinal data of Sengers syndrome patients.


Asunto(s)
Catarata , Hermanos , Adulto , Cardiomiopatías , Catarata/complicaciones , Catarata/diagnóstico , Catarata/genética , Estudios de Seguimiento , Humanos , Recién Nacido , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
5.
Theranostics ; 12(12): 5537-5550, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910796

RESUMEN

Background: Despite of the paradigm change on the treatments of acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) by venetoclax, it has been less successful in the treatment of diffuse large B-cell lymphoma (DLBCL). Here, we explored whether acylglycerol kinase regulates the sensitivity of DLBCLs to venetoclax and its mechanism in both cell lines and preclinical animal models. Methods: The expression of AGK and sensitivity to venetoclax of seven DLBCL cell lines were determined. Upon knockdown and overexpression of AGK by lentivirus in DLBCL cells, the venetoclax-induced apoptosis and PTEN-FOXO1-BCL-2 signaling axis were evaluated in vitro. The efficacy of venetoclax and PTEN-FOXO1-BCL-2 signaling axis were evaluated in immunodeficient NCG mice that were implanted with control or shAGK stably transduced SU-DHL4 cells. The expressions of AGK, BCL-2 and FOXO1 were evaluated in tumor tissues of DLBCL patients. Results: AGK expression was inversely correlated with sensitivity of DLBCL to venetoclax. Inhibition of AGK rendered the DLBCL cells more sensitive to venetoclax. Mechanistically, AGK phosphorylated and inactivated PTEN, which led to AKT activation and reduced FOXO1 nuclear translocation. Inhibition of AGK also led to enhanced efficacy of venetoclax for suppression of DLBCL tumor growth in vivo, which was dependent on FOXO1. In human DLBCL tumor tissues, the expression of AGK inversely correlated with BCL-2 expression, as well as the amounts of nuclear FOXO1. Conclusions: Our data demonstrated that AGK regulates venetoclax response in DLBCL via PTEN-FOXO1-BCL-2 signaling axis. Targeting AGK may enhance the efficacy of venetoclax for the treatment of DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Línea Celular Tumoral , Proteína Forkhead Box O1/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas , Regulación hacia Arriba
6.
Bioengineered ; 13(5): 13055-13069, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35635053

RESUMEN

Oral squamous cell carcinoma (OSCC) is a common cancer with high recurrence, metastasis rates and poor prognosis. Circular RNAs (circRNAs) take part in regulating OSCC. Herein, we examined the role of circ_0008068 in OSCC. The circ_0008068, Katanin p60 ATPase-containing subunit A-like 1 (KATNAL1) mRNA, microRNA-153-3p (miR-153-3p) and acylgycerol kinase (AGK) contents were indicated by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Moreover, in vitro and in vivo assays were conducted to scrutinize the effects of circ_0008068 on OSCC. Additionally, the contact between miR-153-3p and circ_0008068 or AGK was assessed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Thereafter, we found that the appearance of circ_0008068 and AGK was increased, and miR-153-3p content was diminished in OSCC. Circ_0008068 lack subdued cell proliferation, migration, invasion, tube formation and glycolysis metabolism, but stimulated cell apoptosis in OSCC. In addition, circ_0008068 bound to miR-153-3p to modulate the expression of its target AGK. Besides, miR-153-3p was validated to act as a tumor suppressor in OSCC tumorigenesis by suppressing AGK. Additionally, circ_0008068 knockdown also attenuated tumor growth in nude mice. In all, circ_0008068 expedited the growth of OSCC by miR-153-3p/AGK axis.Abbreviations: OSCC: Oral squamous cell carcinoma; AGK: Acylgycerol kinase; CircRNA: Circular RNA; KATNAL1: Katanin p60 ATPase-containing subunit A-like 1; qRT-PCR: Quantitative real-time polymerase chain reaction; miRNAs/miRs: MicroRNAs; RIP: RNA immunoprecipitation; 3'UTR3': -untranslated region; HK2: Hexokinase 2; LDHA Lactate dehydrogenase A; IHC: Immunohistochemistry; CCK8: Cell counting kit-8; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.


Asunto(s)
MicroARNs , Neoplasias de la Boca , ARN Circular , Carcinoma de Células Escamosas de Cabeza y Cuello , Animales , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Katanina/genética , Ratones , Ratones Desnudos , MicroARNs/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Circular/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
7.
Cells ; 11(7)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35406775

RESUMEN

Breast carcinoma (BC) is the most commonly diagnosed type of cancer in women in the world. Although the advances in the treatment of BC patients are significant, numerous side effects, severe toxicity towards normal cells as well as the multidrug resistance (MDR) phenomenon restrict the effectiveness of the therapies used. Therefore, new active compounds which decrease the MDR, extend disease-free survival, thereby ameliorating the effectiveness of the current treatment regimens, are greatly needed. Histone deacetylase inhibitors (HDIs), including sirtuin inhibitors (SIRTi), are the epigenetic antitumor agents which induce a cytotoxic effect in different types of cancer cells, including BC cells. Currently, combined forms of therapy with two or even more chemotherapeutics are promising antineoplastic tools to obtain a better response to therapy and limit adverse effects. Thus, on the one hand, much more effective chemotherapeutics, e.g., sirtuin inhibitors (SIRTi), are in demand; on the other hand, combinations of accepted cytostatics are trialed. Thus, the aim of our research was to examine the combination effects of a renowned cytotoxic drug paclitaxel (PAX) and SIRT2 inhibitor AGK2 on the proliferation and viability of the T47D, MCF7, MDA-MB-231, MDA-MB-468, BT-549 and HCC1937 BC cells. Moreover, cell cycle arrest and apoptosis induction were explored. The type of pharmacological interactions between AGK2 and PAX in different molecular subtypes of BC cells was assessed using the advanced isobolographic method. Our findings demonstrated that the tested active agents singly inhibited viability and proliferation of BC cells as well as induced cell cycle arrest and apoptosis in the cell-dependent context. Additionally, AGK2 increased the antitumor effect of PAX in most BC cell lines. We observed that, depending on the BC cell lines, the combinations of tested drugs showed synergistic, additive or antagonistic pharmacological interaction. In conclusion, our studies demonstrated that the consolidated therapy with the use of AGK2 and PAX can be considered as a potential therapeutic regimen in the personalized cure of BC patients in the future.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Furanos , Paclitaxel , Quinolinas , Antineoplásicos/farmacología , Neoplasias de la Mama/patología , Femenino , Furanos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Paclitaxel/farmacología , Quinolinas/farmacología , Sirtuina 2/antagonistas & inhibidores
8.
Anticancer Res ; 42(1): 373-379, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34969747

RESUMEN

BACKGROUND: Soft tissue myoepithelial carcinomas (STMC) are a rare, malignant subgroup of myoepithelial tumors that arise typically in glandular or ductal tissues, but also in the bone and soft and cutaneous tissues. Due to its rarity, there is no consensus regarding the treatment of STMC, including chemotherapy or other systemic agents for metastatic STMC. CASE REPORT: A chemotherapy- and regorafenib-refractory STMC, harboring an AGK-BRAF fusion, was successfully treated using MEK-inhibition with cobimetinib in monotherapy. MEK-inhibition with cobimetinib effectively silenced paradoxical MAP kinase/ERK-signaling pathway activation after regorafenib monotherapy, and resulted in a significant and durable clinical response. CONCLUSION: This effect of MEK-inhibition in STMC harboring an AGK-BRAF fusion has not been previously reported and contributes to the existing, yet limited, knowledge on the treatment of BRAF fusion-driven tumors. Also, our case highlights the importance of next generation sequencing in driving further rational therapeutic choices to provide disease control and palliation.


Asunto(s)
Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Mioepitelioma/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de los Tejidos Blandos/tratamiento farmacológico , Carcinoma/tratamiento farmacológico , Carcinoma/genética , Carcinoma/patología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Mioepitelioma/genética , Mioepitelioma/patología , Proteínas de Fusión Oncogénica/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología
9.
Front Pharmacol ; 12: 756131, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925016

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a fatal disease with unknown cause and limited treatment options. Its mechanism needs to be further explored. Sirtuin2 (Sirt2), a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been proved to be involved in the fibrosis and inflammation in the liver, kidney and heart. In this study, we aimed to evaluate the role of Sirt2 in pulmonary fibrosis. We found that Sirt2 expression was upregulated in transforming growth factor-ß1 (TGF-ß1) treated human embryonic lung fibroblasts. Sirt2 inhibitor AGK2 or the knockdown of Sirt2 expression by targeting small interfering RNA (siRNA) suppressed the fibrogenic gene α-SMA and Fibronectin expression in TGF-ß1 treated fibroblasts and primary lung fibroblasts derived from patients with IPF. In addition, Sirt2 inhibition suppresses the phosphorylation of Smad2/3. Co-immunoprecipitation (Co-IP) showed that there is interaction between Sirt2 and Smad3 in the TGF-ß1 treated lung fibroblasts. In bleomycin-induced pulmonary fibrosis in mice, AGK2 treatment significantly mitigated the degree of fibrosis and decreased the phosphorylation of Smad2/3. These data suggest that Sirt2 may participate in the development of IPF via regulating the Smad2/3 pathway. Inhibition of Sirt2 would provide a novel therapeutic strategy for this disease.

10.
Cytokine ; 148: 155595, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34116927

RESUMEN

OBJECTIVE: Drug resistance is an important factor that impedes the treatment of nasopharyngeal cancer (NPC). Acylglycerol kinase (AGK) has been found to be overexpressed in NPC and correlates with poor prognosis. Our objective was to demonstrate the effect of AGK on paclitaxel resistance in NPC and determine the underlying mechanisms. METHODS: MTT assay was employed to determine the IC50 of paclitaxel in NPC cells after different treatments. Flow cytometry assays were employed to evaluate cell apoptosis. RT-qPCR and Western blot assays were used to detect alterations in mRNA and protein expression, respectively. Luciferase assays and chromatin immunoprecipitation (ChIP) assays were used to determine the relationship between and the regulatory effect of STAT3 on the promoter of FOXM1. RESULTS: AGK was elevated in paclitaxel-resistant NPC cells, and knockdown of AGK suppressed the resistance of CNE1-TR and CNE2-TR cells to paclitaxel. Moreover, upregulation of FOXM1 rescued the effects of AGK knockdown. Furthermore, the JAK2/STAT3 signalling pathway was overactivated in CNE1-TR and CNE2-TR cells, and knockdown of AGK suppressed JAK2/STAT3 signalling. STAT3 was verified to bind to and activate the promoter region of FOXM1. An in vivo tumour xenograft assay also verified that AGK knockdown inhibited tumour growth and mitigated paclitaxel resistance by regulating the JAK2/STAT3/FOXM1 axis. CONCLUSION: AGK levels were increased in paclitaxel-resistant NPC cells. AGK activates JAK2/STAT3 signalling, thus promoting FOXM1 transcription and eventually enhancing the drug resistance of NPC cells.


Asunto(s)
Resistencia a Antineoplásicos/genética , Proteína Forkhead Box M1/metabolismo , Janus Quinasa 2/metabolismo , Neoplasias Nasofaríngeas/enzimología , Paclitaxel/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Biology (Basel) ; 10(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562578

RESUMEN

The spectrum and incidence of gene fusions in papillary thyroid carcinoma (PTC) can differ significantly depending on the age of onset, histological subtype or radiation exposure history. In sporadic pediatric PTC, RET/PTC1-3 and AGK-BRAF fusions are common genetic alterations. The role of RET/PTC as a prognostic marker in pediatric PTC is still under investigation. We recently showed that AGK-BRAF fusion is prevalent in young patients (mean 10 years) and associated with specific and aggressive pathological features such as multifocality and lung metastasis. In this pilot study, we report a unique patient harboring three different foci: the first was positive for AGK-BRAF fusion, the second was positive for just RET/PTC3 fusion and the third was negative for both rearrangements. To investigate whether AGK-BRAF and RET/PTC3 are associated with genomic instability and chromatin modifications, we performed quantitative fluorescence in situ hybridization (Q-FISH) of telomere repeats followed by 3D imaging analysis and 3D super-resolution Structured Illumination Microscopy (3D-SIM) to analyze the DNA structure from the foci. We demonstrated in this preliminary study that AGK-BRAF is likely associated with higher levels of telomere-related genomic instability and chromatin remodeling in comparison with RET/PTC3 foci. Our results suggest a progressive disruption in chromatin structure in AGK-BRAF-positive cells, which might explain a more aggressive disease outcome in patients harboring this rearrangement.

12.
Cancers (Basel) ; 12(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33120984

RESUMEN

Thyroid cancer is a rare malignancy in the pediatric population that is highly associated with disease aggressiveness and advanced disease stages when compared to adult population. The biological and molecular features underlying pediatric and adult thyroid cancer pathogenesis could be responsible for differences in the clinical presentation and prognosis. Despite this, the clinical assessment and treatments used in pediatric thyroid cancer are the same as those implemented for adults and specific personalized target treatments are not used in clinical practice. In this review, we focus on papillary thyroid carcinoma (PTC), which represents 80-90% of all differentiated thyroid carcinomas. PTC has a high rate of gene fusions and mutations, which can influence the histologic subtypes in both children and adults. This review also highlights telomere-related genomic instability and changes in nuclear organization as novel biomarkers for thyroid cancers.

13.
Indian J Ophthalmol ; 68(11): 2567-2569, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33120694

RESUMEN

Sengers syndrome is a rare autosomal recessive mitochondrial disorder characterized by congenital cataract, hypertrophic cardiomyopathy, and mitochondrial myopathy. We report two siblings with known mutation for Sengers Syndrome (AGK gene mutation) who presented to us with cataract and hypertrophic cardiomyopathy. They have a deceased elder sibling who was operated for cataract earlier.


Asunto(s)
Cardiomiopatías , Catarata , Anciano , Catarata/diagnóstico , Catarata/genética , Niño , Humanos , Mutación , Linaje , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
14.
J Cell Mol Med ; 24(19): 11133-11145, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32827244

RESUMEN

Acylglycerol kinase (AGK) uses adenosine triphosphate (ATP) and acylglycerol to generate adenosine diphosphate (ADP) and acyl-sn-glycerol 3-phosphate in cells. Recent evidence has demonstrated that dysregulated AGK expression is associated with the development of various human cancers. This study investigated the effects of AGK on gastric cancer cell proliferation and carcinogenesis and explored the underlying molecular events. AGK expression was up-regulated in gastric cancer and was associated with poor prognosis in gastric cancer patients. AGK overexpression increased gastric cancer proliferation, invasion capacity and the expression of the epithelial-mesenchymal transition markers in vitro. Conversely, the knockdown of AGK expression reduced gastric cancer cell proliferation in vitro and in nude mouse tumour cell xenografts. Importantly, AGK expression was associated with the YAP1 expression in gastric cancer cells and tissues. YAP1 expression also transcriptionally induced AGK expression through the binding of TEAD to the AGK gene promoter. However, AGK expression inhibited the activation of the Hippo pathway proteins and induced YAP1 nuclear localization to enhance the transcription activity of YAP1/TEADs. In conclusion, the study demonstrates that AGK is not only a novel target of the Hippo-YAP1 pathway, but that it also positively regulates YAP1 expression, thus forming a YAP1-AGK-positive feedback loop.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Humanos , Ratones Desnudos , Invasividad Neoplásica , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Neoplasias Gástricas/patología , Transcripción Genética , Proteínas Señalizadoras YAP
15.
Elife ; 92020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32697192

RESUMEN

Mycobacterium tuberculosis (Mtb) employs plethora of mechanisms to hijack the host defence machinery for its successful survival, proliferation and persistence. Here, we show that Mtb upregulates one of the key epigenetic modulators, NAD+ dependent histone deacetylase Sirtuin 2 (SIRT2), which upon infection translocate to the nucleus and deacetylates histone H3K18, thus modulating the host transcriptome leading to enhanced macrophage activation. Furthermore, in Mtb specific T cells, SIRT2 deacetylates NFκB-p65 at K310 to modulate T helper cell differentiation. Pharmacological inhibition of SIRT2 restricts the intracellular growth of both drug-sensitive and resistant strains of Mtb and enhances the efficacy of front line anti-TB drug Isoniazid in the murine model of infection. SIRT2 inhibitor-treated mice display reduced bacillary load, decreased disease pathology and increased Mtb-specific protective immune responses. Overall, this study provides a link between Mtb infection, epigenetics and host immune response, which can be exploited to achieve therapeutic benefits.


Asunto(s)
Antituberculosos/farmacología , Epigénesis Genética/efectos de los fármacos , Inmunoterapia , Mycobacterium tuberculosis/efectos de los fármacos , Sirtuina 2/antagonistas & inhibidores , Tuberculosis/tratamiento farmacológico , Animales , Femenino , Isoniazida/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/genética , Células RAW 264.7
16.
Pharmacol Res ; 159: 105027, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565308

RESUMEN

Asthma is characterized by airway hyperresponsiveness and allergic inflammation, detrimentally affecting the patients' quality of life. The development of new drugs for the treatment of asthma is warranted to alleviate these issues. Recent studies have demonstrated that sirtuin2 (SIRT2) aggravates asthmatic inflammation by up-regulation of T-helper type 2 responses and macrophage polarization. However, effects of SIRT2 on mast cell activation remain obscure. In this study, we investigated the effects of AGK2, an inhibitor for SIRT2, on mast cell-mediated allergic airway inflammation. Pre-treatment with AGK2 inhibited degranulation of mast cells by suppressing the FcεRI signaling pathway and intracellular calcium influx. The expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-4, IL-5, IL-6, and IL-8, was inhibited via regulation of transcription factors such as NF-κB and NRF2. These effects of AGK2 were verified in passive cutaneous anaphylaxis and acute lung injury animal models. AGK2 attenuated Evans blue pigmentation by inhibiting mast cell activation and lung barrier dysfunction by inhibiting inflammatory responses in these animal models. In the ovalbumin (OVA)-induced allergic airway inflammation murine model, AGK2 alleviated allergic asthma symptoms such as lung histological changes (immune cell and mast cell infiltration, collagen deposition, and α-smooth muscle actin expression) and serum immunoglobulins (Ig) levels (IgE, OVA-specific IgE, IgG1, and IgG2a). Moreover, AGK2 reduced the levels of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-4, IL-5, and IL-6) and inflammatory mediators (myeloperoxidase, eosinophil peroxidase, and tumor growth factor-α) in the bronchoalveolar lavage fluid and lung tissues. In addition, the anti-fibrotic effects of AGK2 were verified using lung epithelial cells and TGF-ß/Smad reporter stable cells. In conclusion, our findings suggest that SIRT2 plays a role in mast cell-mediated airway inflammatory disease. Therefore, AGK2 is a good potential candidate for treating allergic asthma and lung inflammation.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Furanos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Pulmón/efectos de los fármacos , Mastocitos/efectos de los fármacos , Quinolinas/farmacología , Receptores de IgE/antagonistas & inhibidores , Sirtuina 2/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Células A549 , Animales , Asma/enzimología , Asma/inmunología , Asma/fisiopatología , Degranulación de la Célula/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Fibrosis , Liberación de Histamina/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/enzimología , Pulmón/inmunología , Pulmón/fisiopatología , Masculino , Mastocitos/enzimología , Mastocitos/inmunología , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de IgE/metabolismo , Transducción de Señal , Sirtuina 2/metabolismo
17.
J Hematol Oncol ; 13(1): 2, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900208

RESUMEN

BACKGROUND: Clinically, the median survival in patients with metastatic renal cell carcinoma (RCC) was only 6-12 months and a 5-year survival rate of less than 20%. Therefore, an in-depth study of the molecular mechanisms involved in RCC is of great significance for improving the survival of patients with advanced RCC. Acylglycerol kinase (AGK) is a newly discovered lipid kinase that has been reported to be a potent oncogene that may be involved in the regulation of malignant progression in a variety of tumours. However, the expression and biological characteristics of the AGK gene in RCC remain unclear. METHODS: AGK expression was quantified by quantitative real-time PCR, Western blotting and immunohistochemistry in RCC cell lines and paired patient tissues. Kaplan-Meier method and Cox proportional hazards models were used to evaluate the prognostic value of AGK in human RCC tissue samples. Chi-squared test was performed to analyse the correlation between AGK expression and the clinicopathological features. Stable overexpression and knockdown of AGK in RCC cells was constructed with lentivirus. The oncogenic effects of AGK in human RCC progression were investigated using assays of colony formation, anchorage-independent growth, EdU assay, cell cycle analysis, wound-healing, trans-well analysis and xenograft tumour model. GSEA and KEGG analysis were conducted to detect the potential pathway of AGK involved in RCC. These results were further confirmed using the luciferase reporter assays, immunofluorescence and in vivo experiments. RESULTS: AGK expression is significantly elevated in RCC and closely related to the malignant development and poor prognosis in RCC patients. By in vitro and in vivo experiments, AGK was shown to enhance the proliferation of RCC cells by promoting the transition from the G1 phase to the S phase in the cell cycle and to enhance the migration and invasion by promoting epithelial-mesenchymal transition. By activating the PI3K/AKT/GSK3ß signalling pathway in RCC, AGK can increase nuclear accumulation of ß-catenin, which further upregulated TCF/LEF transcription factor activity. CONCLUSIONS: AGK promotes the progression of RCC via activating the PI3K/AKT/GSK3ß signalling pathway and might be a potential target for the further research of RCC.


Asunto(s)
Carcinoma de Células Renales/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neoplasias Renales/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Activación Enzimática , Femenino , Humanos , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia/patología , Transducción de Señal
18.
Fetal Pediatr Pathol ; 39(2): 163-171, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31303091

RESUMEN

INTRODUCTION: Sengers syndrome is an autosomal recessive disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy and lactic acidosis. The causative AGK mutations have been identified with whole exome sequencing. CLINICAL REPORT: We report on a 9-month-old infant with episodic lactic acidosis who died before a definitive diagnosis could be established. Postmortem genomic autopsy revealed a novel homozygous NM_018238: c.1215dupG; p.Phe406Valfs*4 mutation in AGK (OMIM 610345) confirming the diagnosis of Sengers syndrome. CONCLUSION: This report provides further evidence that reverse genetics is a useful approach in patients who do not manifest the hallmark features of known and recognizable syndromes.


Asunto(s)
Cardiomiopatías/genética , Cardiomiopatías/patología , Catarata/genética , Catarata/patología , Mutación/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Autopsia/métodos , Cardiomiopatías/diagnóstico , Catarata/diagnóstico , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Masculino , Mitocondrias/genética , Fenotipo
19.
J Neuroimmune Pharmacol ; 15(2): 196-208, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31786712

RESUMEN

Neuroinflammation is associated with the progression of multiple neurological diseases. Many studies show that SIRT2 involves in multiple inflammatory processes. While, the mechanisms remain unclear. The purpose of this study was to explore the effect of SIRT2 inhibitor AGK2 on inflammatory responses and MAPK signaling pathways in LPS activated microglia in vitro and in vivo. The effect of AGK2 on cell viability of BV2 microglial cells was detected by CCK-8 assay. The expression of inflammatory cytokine iNOS was analyzed by western blotting and immunofluorescence. The mRNA expressions of iNOS, TNF-α, and IL-1ß were detected by real-time polymerase chain reaction (RT-PCR). The SIRT2, phospho-P38, P38, phospho-JNK, JNK, phospho-ERK, ERK, α-tubulin, and acetyl-α-tubulin were analyzed by western blotting respectively. The interaction between SIRT2 and MKP-1 was measured by Co-immunoprecipitation (Co-IP) assay. Double immunofluorescent staining was performed to detect the expressions of CD11b and iNOS or SIRT2 in brain tissues. We found that AGK2 could suppress LPS-induced inflammatory cytokines (iNOS, TNF-α, and IL-1ß) expression levels in BV2 microglial cells. Moreover, it could effectively reduce the expression of SIRT2 and increase the acetylation of α-tubulin in LPS activated BV2 microglial cells and LPS induced mice neuroinflammation. In addition, our results showed that AGK2 could reduce the increase of phosphorylation p38, JNK, and ERK after LPS challenge. Co-IP results showed that there was no direct interaction between MKP-1 and SIRT2. However, AGK2 by inhibition of SIRT2 could increase the expression of MKP-1. Furthermore, AGK2 could inhibit the activation of BV2 microglia and expression of iNOS and SIRT2 in LPS treated mice brain tissue. Taken together, our results suggested that AGK2 might alleviate lipopolysaccharide induced neuroinflammation through regulation of mitogen-activated protein kinase phosphatase-1. Graphical abstract.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/biosíntesis , Furanos/farmacología , Mediadores de Inflamación/antagonistas & inhibidores , Lipopolisacáridos/toxicidad , Quinolinas/farmacología , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/biosíntesis , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo
20.
Cell Mol Biol (Noisy-le-grand) ; 65(7): 66-71, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31880520

RESUMEN

Sirtuin 2 (SIRT2) is a deacetylase that belongs to class III family of histone deacetylases (HDACs). Although it is the most abundantly expressed member of HDAC-III in human bone tissues, it is unclear whether SIRT2 plays a role in bone metabolism. In this study, the role of SIRT2 in bone metabolism, and the underlying mechanism were investigated. In in vivo experiments, micro-CT analysis revealed that there were no differences in bone microstructures between SIRT2-KO and WT rats at 12 weeks of age. However, in 36-week-old rats, increased Tb. BMD, bone volume fraction (BV/TV) and trabecular number (Tb. N) of distal femurs were observed in SIRT2-KO rats, when compared with those of WT rats. Moreover, reduced serum ß-CTX was identified in the 36-week old rats. In in vitro studies, inhibition of SIRT2 with its specific inhibitor, AGK2, suppressed the differentiation of bone marrow-derived mononuclear cells (BMMs) into osteoclasts via reduction of the expressions of c-Fos and NFATc1. These results suggest that SIRT2 plays a role in age-related bone loss, probably by regulating osteoclastogenesis.


Asunto(s)
Osteogénesis/fisiología , Osteoporosis/metabolismo , Osteoporosis/prevención & control , Sirtuina 2/deficiencia , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Femenino , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Ratas , Ratas Mutantes , Sirtuina 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA