Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 271(Pt 1): 132546, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782330

RESUMEN

This study investigated the function of AMP deaminase 1 (AMPD1) in Jingyuan chicken and the biological activity of its expression vector. AMPD1 was cloned and sequenced from chicken breast muscle tissue by RT-PCR and further analyzed using Cluster, DNASTAR, and online bioinformatics software, as well as vector construction, qPCR, Western blotting, enzymatic digestion, and sequencing. The coding sequence was 2162 bp, encoding 683 amino acids and producing a protein of approximately 78.95 kDa. After verification, the overexpression plasmids pEGFP-AMPD1, Cas9/sgRNA2, and Cas9/sgRNA3 were found to have biological activity in chicken muscle cells and individual chickens, and two sgRNAs (sgRNA2, sgRNA3) were identified that could edit AMPD1. The qPCR and Western blotting result showed that the pEGFP-AMPD1 plasmid significantly increased both mRNA and protein expression of AMPD1. T7EI digestion showed editing efficiencies of approximately 35 %, 37 %, and 33 % for sgRNA2, sgRNA3, and sgRNA2 + sgRNA3 of AMPD1 in chicken muscle cells. In comparison, TA cloning sequencing showed editing efficiencies of approximately 36.7 %, 86.7 %, and 26.7 % and editing efficiencies in chicken individuals of approximately 71 %, 45 %, and 76.7 %, respectively. These results provide a theoretical basis and support for further investigation into the function of the AMPD1 gene.


Asunto(s)
AMP Desaminasa , Pollos , Clonación Molecular , Vectores Genéticos , Animales , Pollos/genética , AMP Desaminasa/genética , AMP Desaminasa/metabolismo , Secuencia de Aminoácidos , Expresión Génica , Edición Génica/métodos , Plásmidos/genética , ARN Guía de Sistemas CRISPR-Cas/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-38452850

RESUMEN

Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.


Asunto(s)
Inosina Monofosfato , Perciformes , Animales , Secuencia de Bases , Secuencia de Aminoácidos , Inosina Monofosfato/metabolismo , Filogenia , Perciformes/genética , Perciformes/metabolismo , Adenosina Monofosfato/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Peso Corporal/genética , Proteínas de Peces/metabolismo , Mamíferos/metabolismo
3.
Food Chem Toxicol ; 175: 113731, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931587

RESUMEN

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis that is activated in response to an elevated intracellular AMP/ATP ratio. Although many studies have shown berberine is an AMPK activator widely used in metabolic syndrome, how to properly control AMPK activity remains obscure. Our present study aimed to examine the protective effect of berberine against fructose-induced insulin resistance in rats and L6 cells, as well as its potential activation mechanism on AMPK. The results showed that berberine effectively reversed body weight gain, Lee's index, dyslipidemia and insulin intolerance. Moreover, berberine alleviated inflammatory response, antioxidant capacity and promoted glucose uptake in vivo and in vitro. The beneficial effect was associated with upregulation of both Nrf2 and AKT/GLUT4 pathways, which were regulated by AMPK. Notably, berberine could increase the level of AMP and the ratio of AMP/ATP, then further activate AMPK. Mechanistic experiments revealed that berberine suppressed the expression of adenosine monophosphate deaminase 1 (AMPD1) and promoted the expression of adenylosuccinate synthetase (ADSL). Taken together, berberine exerted excellent therapeutic effect on insulin resistance. And its mode of action may be related to the AMP-AMPK pathway by regulating AMPD1 and ADSL.


Asunto(s)
Berberina , Resistencia a la Insulina , Ratas , Animales , Resistencia a la Insulina/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Berberina/farmacología , Adenilosuccinato Sintasa/metabolismo , Músculo Esquelético , Insulina/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/metabolismo
4.
Brain Sci ; 12(12)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36552065

RESUMEN

(1) Background: Riboflavin transporter deficiency (RTD), formerly known as Brown−Vialetto−Van Laere syndrome, is a rare condition that causes a progressive neurological syndrome in early life with features of auditory and optic neuropathy, weakness of bulbar muscles and the diaphragm and sensorimotor neuropathy. Pathologic mutations in the genes that code for riboflavin transporters have been identified as the genetic basis of RTD, and the majority of the genetically confirmed cases are caused by mutations of SLC52A3, a riboflavin transporter 2 coding gene or compound mutations in SLC52A2, encoding riboflavin transporter 3. Fatality in childhood is common if the condition is left untreated, but survival into adulthood has been reported in cases treated with high-dose oral riboflavin. (2) Case summary: We report two long-term survivors of RTD type 2 due to compound heterozygous 185T> G and 1258G>A mutations in gene SLC2A2. They are two brothers in a family in which two female siblings died in childhood from a similar neurological disorder. Brother one, the older RTD survivor, is aged 71, and brother two is aged 58. Both have significant visual impairment from optic nerve atrophy and sensory ataxia. Their muscle biopsies showed decreased muscle adenosine monophosphate (AMP) deaminase activity. No AMPD1 mutation was detected through whole-genome sequencing. (3) Conclusion: Co-existing riboflavin transporter deficiency (RTD) type 2 and muscle AMP deaminase deficiency has not been previously reported. Apart from the possibility that there is a milder phenotype associated with these mutations in SLC2A2, AMP deaminase deficiency might have contributed to a survival benefit by preserving muscle function through accumulating intracellular AMP.

5.
Front Physiol ; 13: 970939, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36111156

RESUMEN

Inosine monophosphate (IMP) is the main flavoring substance in aquatic animal, and adenosine monophosphate deaminase1 (AMPD1) gene is a key gene in IMP formation. At present, the research on the mechanism of AMPD1 regulating IMP formation in aquatic animal is still blank. In this study, in order to study the mechanism of AMPD1 regulating IMP formation in fish, the full open reading frame (ORF) of AMPD1 which was 2160bp was obtained for the first time in triploid crucian carp (Carassius auratus). It encoded 719 amino acids with a molecular mass of 82.97 kDa, and the theoretical isoelectric point value was 6.31. The homology analysis showed that the homology of triploid crucian carp and diploid Carassius auratus was the highest, up to 99%. And the phylogenetic tree showed that triploid crucian carp was grouped with diploid Carassius auratus, Culter alburnus, and Danio rerio. And real-time fluorescence quantitative results showed that AMPD1 was expressed specifically in muscle of triploid crucian carp (p < 0.05). The results of detection the localization of AMPD1 in cells indicated that the AMPD1 was mainly localized in cytoplasm and cell membrane. Further, we examined the effects of glutamate which was the promotor of IMP formation on the expression of AMPD1 and the formation of IMP in vivo and in vitro experiments, the results showed that 3% glutamate and 2 mg/ml glutamate could significantly promote AMPD1 expression and IMP formation in triploid crucian carp muscle tissue and muscle cells (p < 0.05). Then we inhibited the expression of AMPD1 in vivo and in vitro experiments, we found the formation of IMP in muscle tissue and muscle cells of triploid crucian carp all were inhibited and they affected the gene expression of AMPK-mTOR signaling pathway. The all results showed that AMPD1 mediated glutamate through AMPK-mTOR signaling pathway to regulate the formation of fish IMP.

6.
Biochim Biophys Acta Gen Subj ; 1866(2): 130044, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34710488

RESUMEN

BACKGROUND: Skeletal muscle AMP deaminase (AMPD1) regulates the concentration of adenine nucleotides during muscle contraction. We previously provided evidence that rabbit AMPD1 is composed by two HPRG 73 kDa subunits and two 85 kDa catalytic subunits with a dinuclear zinc site with an average of two histidine residues at each metal site. AMPD1 is mainly expressed in fast twitching fibers and is inhibited by ATP. The limited trypsinization of the 95-residue N-terminal domain of rabbit AMPD1 desensitizes the enzyme towards ATP inhibition at the optimal pH 6.5, but not at pH 7.1. METHODS: The modified residues of rabbit AMPD1 after incubation with radioactive diethyl pyrocarbonate ([14C]DEP) causing the desensitization to inhibition by ATP at pH 7.1 have been identified by sequence analysis and MS analysis of the radioactive peptides liberated from the carbethoxylated enzyme by limited proteolysis with trypsin. RESULTS: The study confirms the presence of a dinuclear zinc site in rabbit AMPD1 and shows that carbethoxylation of His-51 at the N-terminus of the catalytic subunit removes the inhibition of the enzyme by ATP at pH 7.1. CONCLUSIONS: The desensitization to ATP is due to the modification of His-51 of the Zn2 coordination sphere which is transduced in a conformational change of the enzyme C-terminus, where an ATP-binding site has been localized. GENERAL SIGNIFICANCE: The progress in the study of the complex regulation of rabbit AMPD1 that shares an identical amino acid sequence with the human enzyme is important in relation to the role of the enzyme during mammalian evolution.


Asunto(s)
AMP Desaminasa
7.
Front Oncol ; 11: 749135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900696

RESUMEN

BACKGROUND: Although immunotherapy has been used in the treatment of metastatic triple negative breast cancer (TNBC), its therapeutic influence on human epidermal growth factor receptor 2 (HER2)-positive subtype remains controversial. It is therefore imperative to find biomarkers that can predict the immune response in HER2+ BC. METHODS: ESTIMATE was utilized to compute the ImmuneScore and StromalScore from data obtained from TCGA database, and differentially expressed genes (DEGs) were identified. In addition, univariate Cox regression was used to assess candidate genes such as AMPD1, CD33, and CCR5. Gene set enrichment analysis (GSEA) was used to further understand AMPD1-associated pathways. Moreover, immunohistochemical analyses were performed to further reveal the relationship among AMPD1, CD4 and CD8 genes. RESULTS: The expression of AMPD1 was markedly associated with disease outcome and tumor-infiltrating immune cells (TICs). In addition, AMPD1 was associated with lymph node status, age and the expression of PD-L1 and PD-L2. High AMPD1 expression was linked to longer overall survival (OS). Upregulated expression of AMPD1 correlated with the enrichment of immune-related signaling pathways. In addition, immunohistochemical analyses demonstrated a co-expression profile among AMPD1, CD4 and CD8 genes. CONCLUSIONS: Taken together, our data demonstrated that AMPD1 might serve as a novel biomarker for predicting the immune response and disease outcome in HER2+ BC.

8.
Anim Genet ; 52(1): 121-125, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33226134

RESUMEN

Freshness is an important index to determine the quality deterioration (protein degradation and changes in appearance) of chilled chicken meat and is a primary consideration of consumers. Adenosine monophosphate deaminase 1 (AMPD1) catalyzes the deamination of adenosine monophosphate to inosine monophosphate in skeletal muscle and is the rate-limiting step in the purine nucleotide cycle. Inosine monophosphate is regarded as an important indicator of meat freshness in chicken. This study investigated the association of polymorphisms in the chicken AMPD1 promoter region with meat freshness during freezing storage. An SNP (c. -905G>A) was found to be associated with the freshness (K-value) of chicken breast meat. Chickens with the AA genotype had significantly lower K-values than those with GG and AG genotypes (P < 0.01). Individuals with the AA genotype also had higher breast meat AMPD1 mRNA levels than did those with the GG and AG genotypes (P < 0.01, P < 0.05). A luciferase assay revealed that genotype AA had greater transcriptional activity than genotype GG. Transcription factor binding site analysis identified distinct putative transcription factor binding sites in the two alleles of mutation site c. -905. In summary, we identified an SNP (c. -905G>A) in the promoter region of the AMPD1 gene that may modulate the binding affinity of different transcription factors to control AMPD1 expression and affect the freshness K-value of chicken meat.


Asunto(s)
AMP Desaminasa/genética , Pollos/genética , Calidad de los Alimentos , Regiones Promotoras Genéticas , Alelos , Animales , Femenino , Genotipo , Aves de Corral
9.
Appl Physiol Nutr Metab ; 45(11): 1225-1231, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32379996

RESUMEN

Information about the association of energy and iron-metabolising genes with endurance performance is scarce. The objective of this investigation was to compare the frequencies of polymorphic variations of genes involved in energy generation and iron metabolism in elite endurance athletes versus nonathlete controls. Genotype frequencies in 123 male elite endurance athletes (75 professional road cyclists and 48 elite endurance runners) and 122 male nonathlete participants were compared by assessing 4 genetic polymorphisms: AMPD1 c.34C/T (rs17602729), PPARGC1A c.1444G/A (rs8192678) HFEH63D c.187C/G (rs1799945) and HFEC282Y c.845G/A (rs1800562). A weighted genotype score (w-TGS; from 0 to 100 arbitrary units (a.u.)) was calculated by assigning a corresponding weight to each polymorphism. In the nonathlete population, the mean w-TGS value was lower (39.962 ± 14.654 a.u.) than in the group of elite endurance athletes (53.344 ± 17.053 a.u). The binary logistic regression analysis showed that participants with a w-TGS > 38.975 a.u had an odds ratio of 1.481 (95% confidence interval: 1.244-1.762; p < 0.001) for achieving elite athlete status. The genotypic distribution of polymorphic variations involved in energy generation and iron metabolism was different in elite endurance athletes vs. controls. Thus, an optimal genetic profile in these genes might contribute to physical endurance in athlete status. Novelty Genetic profile in energy generation and iron-metabolising genes in elite endurance athletes is different than that of nonathletes. There is an implication of an "optimal" genetic profile in the selected genes favouring endurance sporting performance.


Asunto(s)
Atletas , Genotipo , Hierro/metabolismo , Resistencia Física/genética , Polimorfismo Genético , AMP Desaminasa/genética , Adolescente , Adulto , Estudios de Casos y Controles , Proteína de la Hemocromatosis/genética , Humanos , Masculino , Herencia Multifactorial , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , España , Adulto Joven
10.
Genes (Basel) ; 11(5)2020 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-32429460

RESUMEN

Background: The C34T polymorphism (rs 17602729) in adenosine monophosphate deaminase 1 gene (AMPD1) is associated with muscular energy metabolism in exercise. However, the role of its potential modifying impact on exercise-induced changes in obesity related parameters is unknown. The aim of the study was to determine if the C34T polymorphism influences the effects of an exercise training. METHODS: This study examines a group of one hundred and sixty-eight, young, non-obese Caucasian women in Poland who took part in a 12-week aerobic training program to determine the impact of allele and genotype distribution on training outcomes. RESULTS: A two-way analysis of variance ANOVA was conducted assuming a dominant model by pooling rare homozygotes and heterozygotes (TT + CT, n = 79) and comparing against common homozygotes (CC, n = 89). Our results showed that the AMPD1 C34T polymorphism was not related with selected parameters in study group. After completing the 12-week training program, a wide array of parameters (body mass, body mass index, fat mass, free fat mass, total body water) were significantly changed in the study participants with the exception of AMPD1 genotypes, among whom no significant changes were observed. CONCLUSIONS: The results did not confirm that harboring the rs 17602729 T allele influences the effects of the training program.


Asunto(s)
AMP Desaminasa/genética , Composición Corporal/genética , Peso Corporal/genética , Insuficiencia Cardíaca/genética , Adulto , Composición Corporal/fisiología , Peso Corporal/fisiología , Ejercicio Físico/fisiología , Femenino , Insuficiencia Cardíaca/fisiopatología , Heterocigoto , Homocigoto , Humanos , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
11.
Exp Ther Med ; 15(4): 3357-3361, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29545855

RESUMEN

This study investigated the expression of adenosine monophosphate deaminase 1 (AMPD1) in serum of patients with papillary thyroid carcinoma (PTC) and its clinical significance. The expression levels of AMPD1 mRNA in serum of 157 patients with PTC and 100 normal controls were detected by real-time fluorescent quantitative polymerase chain reaction (PCR), and the relationships between expression level of AMPD1 in serum of PTC patients and clinicopathological factors as well as prognosis were analyzed. The results of real-time fluorescent quantitative PCR showed that the expression of AMPD1 mRNA in serum of PTC patients was lower than that in normal human serum (P<0.01). The expression of AMPD1 in serum of PTC patients was not significantly different from the clinicopathological features such as sex, age, lymph node metastasis and the number of lesions (P>0.05); there were distinct differences between its expression and tumor-node-metastasis (TNM) staging and tumor diameter (P<0.05). The single factor Cox analysis revealed that sex, age, number of lesions, TNM staging and the occurrence of lymph node metastasis were significantly correlated with the prognosis of patients (P<0.05). Multivariate Cox analysis showed that TNM staging hazard ratio (HR)=2.93, 95% confidence interval (CI): 1.52-7.04, P=0.015 was an independent prognostic factor in PTC patients. Survival analysis indicated that there was a statistically significant difference in the 5-year overall survival rate between patients with high expression of AMPD1 and those with low expression (P=0.007). In conclusion, the expression of AMPD1 in serum of patients with PTC is closely related to the malignant evolution of PTC and clinical prognosis of patients. AMPD1 is expected to become an important molecule in judging the clinical prognosis of PTC patients, and may become a new target for molecular targeted therapy of PTC.

12.
BMC Cardiovasc Disord ; 17(1): 174, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28673246

RESUMEN

BACKGROUND: The meta-analysis was aimed to evaluate the effects of AMPD1 gene C34T polymorphism on cardiac function indexes, blood pressure and prognosis in patients with cardiovascular diseases (CVD). METHODS: Eligible studies were retrieved through a comprehensive search of electronic databases and manual search. Then the high-quality studies met the rigorous inclusion and exclusion criteria, as well as related to the subject was selected for the study. Comprehensive data analyses were conducted using STATA software 12.0. RESULTS: The study results revealed that CVD patients with CT + TT genotype of AMPD1 C34T polymorphism presented elevated left ventricular ejection fraction (LVEF) (%) and reduced left ventricular end diastolic dimension (LVEDD) (mm) as compared with CC genotype, moreover, the subgroup analysis found that the LVEF (%) was markedly higher in heart failure (HF) patients carrying CT + TT genotype than CC genotype. Besides, the systolic blood pressure (SBP) (mmHg) in CVD patients with CT + TT genotype was obviously decreased in contrast with the CC genotype. Patients suffered from HF with different genotypes (CT + TT and CC) of AMPD1 C34T polymorphism exhibited no significant differences in total survival rate and cardiac survival rate. CONCLUSIONS: Our current meta-analysis indicated that the T allele of AMPD1 gene C34T polymorphism may be correlated with LVEF, LVEDD and SBP, which plays a protective role in the cardiac functions and blood pressure in CVD patients, but had no effects on total survival rate and cardiac survival rate for HF.


Asunto(s)
AMP Desaminasa/genética , Presión Sanguínea/genética , Enfermedades Cardiovasculares/genética , Polimorfismo Genético , Función Ventricular Izquierda/genética , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/fisiopatología , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Humanos , Estimación de Kaplan-Meier , Modelos Lineales , Fenotipo , Pronóstico , Factores Protectores , Medición de Riesgo , Factores de Riesgo , Volumen Sistólico/genética
13.
Ann Biol Clin (Paris) ; 75(4): 445-449, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28751290

RESUMEN

Myoadenylate deaminase deficit (MAD, MIM#615511) is the most common cause of metabolic myopathies with an estimated prevalence of 1-2% in the general population. We report the case of a 39-year-old man suffering from severe skeletal muscle pain that had developed gradually for 4 years. A moderate increase in creatine kinase (CK) was the only biological sign observed. This study takes a closer look at a common but poorly known pathology and highlights the interest of the dynamic metabolic investigations carried out during exercise stress test with a cycle ergometer. Our non-invasive clinical and biological examination, at the interface between physiology and biology, disclosed the total absence of a physiological increase in plasma ammonia evocative of MAD. However, MAD was later confirmed by histochemistry and molecular studies, which revealed the presence of the recurrent homozygous pathogenic variant affecting the adenosine monophosphate deaminase 1 gene (AMPD1) in most patients with MAD.


Asunto(s)
AMP Desaminasa/deficiencia , Prueba de Esfuerzo , Mialgia/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/diagnóstico , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , AMP Desaminasa/genética , Adulto , Diagnóstico Diferencial , Tolerancia al Ejercicio/genética , Homocigoto , Humanos , Masculino , Mutación , Mialgia/genética , Mialgia/patología , Errores Innatos del Metabolismo de la Purina-Pirimidina/complicaciones , Errores Innatos del Metabolismo de la Purina-Pirimidina/patología
14.
Appl Physiol Nutr Metab ; 42(6): 596-604, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28177711

RESUMEN

This study investigated whether ACTN3 R577X, AMPD1 C34T, I/D ACE, and M235T AGT polymorphisms can affect performance tests such as jumping, sprinting, and endurance in 220 young male athletes from professional minor league soccer team from São Paulo Futebol Clube, Brazil. I/D ACE and M235T AGT polymorphisms were also analyzed according to cardiac and hemodynamic parameters. Athletes were grouped or not by age. DNA from saliva and Taqman assays were used for genotyping 220 athletes and the results were associated with performance tests. Ventricle mass, ventricle end-diastolic diameter, end-diastolic volume, and ejection fraction were assessed by echocardiogram. Arterial pressure, heart rate, and oximetry were assessed by a cardioscope. The main results of this study were that athletes who carried RR/RX (ACTN3) and DD (ACE) genotypes presented better performance during jump and sprint tests. On the other hand, athletes with ID/II genotype presented better results during endurance test, while AGT genotypes did not seem to favor the athletes during the evaluated physical tests. CC genotype (AMPD1) only favored the athletes during 10-m sprint test. Although there are environmental interactions influencing performance, the present results suggest that RR/RX ACTN3 and ACE DD genotypes may benefit athletes in activities that require strength and speed, while II ACE genotype may benefit athletes in endurance activities. This information could help coaches to plan the training session to improve the athletes' performance.


Asunto(s)
Rendimiento Atlético , Hemodinámica , Polimorfismo Genético , Fútbol , AMP Desaminasa/genética , Actinina/genética , Adolescente , Adulto , Angiotensinógeno/genética , Atletas , Brasil , Técnicas de Genotipaje , Humanos , Estilo de Vida , Masculino , Peptidil-Dipeptidasa A/genética , Análisis de Secuencia de ADN , Adulto Joven
15.
Gene ; 574(2): 204-9, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26275943

RESUMEN

The object of this study was to evaluate associations between the adenosine monophosphate deaminase 1 (AMPD1) gene polymorphisms and inosine monophosphate acid (IMP) contents of chicken to provide a molecular marker for breeding. Three single nucleotide polymorphisms (SNPs), g.4064G/A, g.5573A/G and g.6805G/A were detected in exons IV, VI, and VIII of the AMPD1 gene in Fast Partridge and Lingshan chickens, respectively. All were purine conversion and caused no alteration in amino acid sequence. Statistical analysis revealed that Lingshan chicken with the homozygous genotype AA at position 4064 and 6805 had a significantly greater IMP content than those with the GG genotype (P<0.05). Fast Partridge chicken with the genotype GG at position 6805 had a significantly greater IMP content compared with those with the AA genotype (P<0.05). In conclusion, the polymorphism at g.6805A/G was correlated with IMP content (P<0.05) in both Fast Partridge and Lingshan chickens. The results in our study suggest that SNP 6805A/G can be used as a possible candidate marker of IMP content of chicken.


Asunto(s)
AMP Desaminasa/genética , Pollos/genética , Inosina Monofosfato/metabolismo , AMP Desaminasa/metabolismo , Animales , Secuencia de Bases , Cruzamiento , Pollos/metabolismo , Estudios de Asociación Genética , Marcadores Genéticos , Carne , Sistemas de Lectura Abierta/genética , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Distribución Tisular
16.
Exp Cell Res ; 336(2): 287-97, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26101156

RESUMEN

Single-nucleotide polymorphisms associated with type 2 diabetes (T2D) have been identified in Jazf1, which is also involved in the oncogenesis of endometrial stromal tumors. To understand how Jazf1 variants confer a risk of tumorigenesis and T2D, we explored the functional roles of JAZF1 and searched for JAZF1 target genes in myogenic C2C12 cells. Consistent with an increase of Jazf1 transcripts during myoblast proliferation and their decrease during myogenic differentiation in regenerating skeletal muscle, JAZF1 overexpression promoted cell proliferation, whereas it retarded myogenic differentiation. Examination of myogenic genes revealed that JAZF1 overexpression transcriptionally repressed MEF2C and MRF4 and their downstream genes. AMP deaminase1 (AMPD1) was identified as a candidate for JAZF1 target by gene array analysis. However, promoter assays of Ampd1 demonstrated that mutation of the putative binding site for the TR4/JAZF1 complex did not alleviate the repressive effects of JAZF1 on promoter activity. Instead, JAZF1-mediated repression of Ampd1 occurred through the MEF2-binding site and E-box within the Ampd1 proximal regulatory elements. Consistently, MEF2C and MRF4 expression enhanced Ampd1 promoter activity. AMPD1 overexpression and JAZF1 downregulation impaired AMPK phosphorylation, while JAZF1 overexpression also reduced it. Collectively, these results suggest that aberrant JAZF1 expression contributes to the oncogenesis and T2D pathogenesis.


Asunto(s)
AMP Desaminasa/genética , Proteínas Portadoras/genética , Transformación Celular Neoplásica/genética , Diabetes Mellitus Tipo 2/genética , Desarrollo de Músculos/genética , Proteínas Nucleares/genética , AMP Desaminasa/biosíntesis , Animales , Sitios de Unión/genética , Proteínas Portadoras/biosíntesis , Diferenciación Celular/genética , Línea Celular , Proliferación Celular/genética , Proteínas Co-Represoras , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica/genética , Factores de Transcripción MEF2/biosíntesis , Factores de Transcripción MEF2/genética , Ratones , Fibras Musculares Esqueléticas/citología , Factores Reguladores Miogénicos/biosíntesis , Factores Reguladores Miogénicos/genética , Proteínas Nucleares/biosíntesis , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Interferente Pequeño , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA