Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38895409

RESUMEN

Coronaviruses (CoV) rewire host protein homeostasis (proteostasis) networks through interactions between viral nonstructural proteins (nsps) and host factors to promote infection. With the emergence of SARS-CoV-2, it is imperative to characterize host interactors shared across nsp homologs. Using quantitative proteomics and functional genetic screening, we identify conserved proteostasis interactors of nsp2 and nsp4 that serve pro-viral roles during infection of murine hepatitis virus - a model betacoronavirus. We uncover a glycoprotein quality control factor, Malectin (MLEC), which significantly reduces infectious titers when knocked down. During infection, nsp2 interacts with MLEC-associated proteins and the MLEC-interactome is drastically altered, stabilizing association with the Oligosaccheryltransferase (OST) complex, a crucial component of viral glycoprotein production. MLEC promotes viral protein levels and genome replication through its quality control activity. Lastly, we show MLEC promotes SARS-CoV-2 replication. Our results reveal a role for MLEC in mediating CoV infection and identify a potential target for pan-CoV antivirals.

2.
Anal Bioanal Chem ; 416(19): 4249-4260, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850318

RESUMEN

The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.


Asunto(s)
Proteínas del Choque Térmico HSP40 , Proteínas del Choque Térmico HSP40/metabolismo , Humanos , Células HEK293 , Proteómica/métodos , Unión Proteica , Proteínas HSP70 de Choque Térmico/metabolismo , Estabilidad Proteica , Pliegue de Proteína
3.
bioRxiv ; 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38496650

RESUMEN

The FragPipe computational proteomics platform is gaining widespread popularity among the proteomics research community because of its fast processing speed and user-friendly graphical interface. Although FragPipe produces well-formatted output tables that are ready for analysis, there is still a need for an easy-to-use and user-friendly downstream statistical analysis and visualization tool. FragPipe-Analyst addresses this need by providing an R shiny web server to assist FragPipe users in conducting downstream analyses of the resulting quantitative proteomics data. It supports major quantification workflows including label-free quantification, tandem mass tags, and data-independent acquisition. FragPipe-Analyst offers a range of useful functionalities, such as various missing value imputation options, data quality control, unsupervised clustering, differential expression (DE) analysis using Limma, and gene ontology and pathway enrichment analysis using Enrichr. To support advanced analysis and customized visualizations, we also developed FragPipeAnalystR, an R package encompassing all FragPipe-Analyst functionalities that is extended to support site-specific analysis of post-translational modifications (PTMs). FragPipe-Analyst and FragPipeAnalystR are both open-source and freely available.

4.
Elife ; 122024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270169

RESUMEN

The α-arrestins form a large family of evolutionally conserved modulators that control diverse signaling pathways, including both G-protein-coupled receptor (GPCR)-mediated and non-GPCR-mediated pathways, across eukaryotes. However, unlike ß-arrestins, only a few α-arrestin targets and functions have been characterized. Here, using affinity purification and mass spectrometry, we constructed interactomes for 6 human and 12 Drosophila α-arrestins. The resulting high-confidence interactomes comprised 307 and 467 prey proteins in human and Drosophila, respectively. A comparative analysis of these interactomes predicted not only conserved binding partners, such as motor proteins, proteases, ubiquitin ligases, RNA splicing factors, and GTPase-activating proteins, but also those specific to mammals, such as histone modifiers and the subunits of V-type ATPase. Given the manifestation of the interaction between the human α-arrestin, TXNIP, and the histone-modifying enzymes, including HDAC2, we undertook a global analysis of transcription signals and chromatin structures that were affected by TXNIP knockdown. We found that TXNIP activated targets by blocking HDAC2 recruitment to targets, a result that was validated by chromatin immunoprecipitation assays. Additionally, the interactome for an uncharacterized human α-arrestin ARRDC5 uncovered multiple components in the V-type ATPase, which plays a key role in bone resorption by osteoclasts. Our study presents conserved and species-specific protein-protein interaction maps for α-arrestins, which provide a valuable resource for interrogating their cellular functions for both basic and clinical research.


Asunto(s)
Arrestina , ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Histonas , Drosophila , Arrestinas , Mamíferos
5.
RNA Biol ; 21(1): 1-9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38105541

RESUMEN

Understanding RNA-protein interactions is crucial for deciphering the cellular functions and molecular mechanisms of regulatory RNAs. Consequently, there is a constant need to develop innovative and cost-effective methods to uncover such interactions. We developed a simple and cost-effective technique called Multiple Oligo assisted RNA Pulldown via Hybridization (MORPH) to identify proteins interacting with a specific RNA. MORPH employs a tiling array of antisense oligos (ASOs) to efficiently capture the RNA of interest along with proteins associated with it. Unlike existing techniques that rely on multiple individually biotinylated oligos spanning the entire RNA length, MORPH stands out by utilizing a single biotinylated oligo to capture all the ASOs. To evaluate MORPH's efficacy, we applied this technique combined with mass spectrometry to identify proteins interacting with lncRNA NEAT1, which has previously been studied using various methods. Our results demonstrate that despite being a simple and inexpensive procedure, MORPH performs on par with existing methods.Abbreviations: ASO, Antisense oligo; lncRNA, long non-coding RNA; MORPH, Multiple Oligo assisted RNA Pulldown via Hybridization.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Hibridación de Ácido Nucleico , Espectrometría de Masas/métodos , Proteínas/genética
6.
Cell Syst ; 14(10): 860-871.e4, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37820729

RESUMEN

Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.


Asunto(s)
Escherichia coli , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Genoma Bacteriano/genética , Genómica
7.
Methods Mol Biol ; 2690: 81-85, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450138

RESUMEN

Affinity purification-Mass spectroscopy (AP-MS) is a biochemical technique to identify the novel protein-protein interaction that occurs in the most relevant physiological conditions, whereas co-immunoprecipitation (Co-IP) is used to study the interaction between two known protein partners that are expressed in the native physiological conditions. Both AP-MS and Co-IP techniques are based on the ability of the interacting partners to pull-down with protein of interest. In this chapter, we have explained the AP-MS and Co-IP methods to study protein-protein interactions in the plant cells.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Unión Proteica , Proteínas/química , Espectrometría de Masas , Cromatografía de Afinidad , Inmunoprecipitación , Mapeo de Interacción de Proteínas/métodos
8.
Methods Mol Biol ; 2690: 255-267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450153

RESUMEN

Protein-protein interactions (PPIs) are the physical interactions formed among proteins. These interactions are primarily functional, i.e., they arise from specific biomolecular events, and each interaction interface serves a specific purpose. A significant number of methods have been developed for protein interactions in the field of proteomics in the last decade. Advanced mass spectrometry technology significantly contributed to the development of these methods. The rapid advancement of groundbreaking MS technology has greatly aided the mapping of protein interaction from large-data sets comprehensively. This chapter describes the affinity purification (AP) mass spectrometry (MS)-based methods combined with chemical cross-linking (XL) of protein complexes. This chapter includes sample preparation methods involving cell culture, cell treatments with ligands, drugs, and cross-linkers, protein extractions, affinity purification, sodium dodecyl sulfate (SDS) polyacrylamide gel separation, in-solution or in-gel digestion, liquid-chromatography, and mass spectrometry analysis of samples (LC-MS/MS). Application of a cleavable cross-linker, dual cleavable cross-linking technology (DUCCT) in combination with the affinity purification (AP) method has also been described. Methods for data analysis using unmodified and cross-linked peptide analysis are discussed.


Asunto(s)
Mapas de Interacción de Proteínas , Proteómica , Proteómica/métodos , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Proteínas/química , Mapeo de Interacción de Proteínas/métodos , Reactivos de Enlaces Cruzados/química
9.
Biol Direct ; 18(1): 26, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37254218

RESUMEN

BACKGROUND: The human genome contains nearly 20.000 protein-coding genes, but there are still more than 6,000 proteins poorly characterized. Among them, ZNF330/NOA36 stand out because it is a highly evolutionarily conserved nucleolar zinc-finger protein found in the genome of ancient animal phyla like sponges or cnidarians, up to humans. Firstly described as a human autoantigen, NOA36 is expressed in all tissues and human cell lines, and it has been related to apoptosis in human cells as well as in muscle morphogenesis and hematopoiesis in Drosophila. Nevertheless, further research is required to better understand the roles of this highly conserved protein. RESULTS: Here, we have investigated possible interactors of human ZNF330/NOA36 through affinity-purification mass spectrometry (AP-MS). Among them, NOA36 interaction with HSPA1 and HSPA8 heat shock proteins was disclosed and further validated by co-immunoprecipitation. Also, "Enhancer of Rudimentary Homolog" (ERH), a protein involved in cell cycle regulation, was detected in the AP-MS approach. Furthermore, we developed a NOA36 knockout cell line using CRISPR/Cas9n in HEK293, and we found that the cell cycle profile was modified, and proliferation decreased after heat shock in the knocked-out cells. These differences were not due to a different expression of the HSPs genes detected in the AP-MS after inducing stress. CONCLUSIONS: Our results indicate that NOA36 is necessary for proliferation recovery in response to thermal stress to achieve a regular cell cycle profile, likely by interaction with HSPA1 and HSPA8. Further studies would be required to disclose the relevance of NOA36-EHR interaction in this context.


Asunto(s)
Proteínas de Unión al ADN , Proteínas del Choque Térmico HSC70 , Respuesta al Choque Térmico , Chaperonas Moleculares , Humanos , Ciclo Celular , División Celular , Células HEK293 , Proteínas del Choque Térmico HSC70/genética , Proteínas del Choque Térmico HSC70/metabolismo , Chaperonas Moleculares/genética , Proteínas de Unión al ADN/genética
10.
J Proteome Res ; 22(6): 1660-1681, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37071664

RESUMEN

The DNA repair scaffold SLX4 has pivotal roles in cellular processes that maintain genome stability, most notably homologous recombination. Germline mutations in SLX4 are associated with Fanconi anemia, a disease characterized by chromosome instability and cancer susceptibility. The role of mammalian SLX4 in homologous recombination depends critically on binding and activating structure-selective endonucleases, namely SLX1, MUS81-EME1, and XPF-ERCC1. Increasing evidence indicates that cells rely on distinct SLX4-dependent complexes to remove DNA lesions in specific regions of the genome. Despite our understanding of SLX4 as a scaffold for DNA repair proteins, a detailed repertoire of SLX4 interactors has never been reported. Here, we provide a comprehensive map of the human SLX4 interactome using proximity-dependent biotin identification (BioID) and affinity purification coupled to mass spectrometry (AP-MS). We identified 221 unique high-confidence interactors, of which the vast majority represent novel SLX4-binding proteins. Network analysis of these hits revealed pathways with known involvement of SLX4, such as DNA repair, and several emerging pathways of interest, including RNA metabolism and chromatin remodeling. In summary, the comprehensive SLX4 interactome we report here provides a deeper understanding of how SLX4 functions in DNA repair while revealing new cellular processes that may involve SLX4.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Animales , Humanos , Proteínas de Unión al ADN/metabolismo , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , ADN/genética , Recombinación Homóloga , Mamíferos/genética , Mamíferos/metabolismo , Recombinasas/química , Recombinasas/genética , Recombinasas/metabolismo
11.
Mol Biol Rep ; 50(5): 4605-4618, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36920596

RESUMEN

Interactomics is a branch of systems biology that deals with the study of protein-protein interactions and how these interactions influence phenotypes. Identifying the interactomes involved during host-pathogen interaction events may bring us a step closer to deciphering the molecular mechanisms underlying plant defence. Here, we conducted a systematic review of plant interactomics studies over the last two decades and found that while a substantial progress has been made in the field, plant-pathogen interactomics remains a less-travelled route. As an effort to facilitate the progress in this field, we provide here a comprehensive research pipeline for an in planta plant-pathogen interactomics study that encompasses the in silico prediction step to the validation step, unconfined to model plants. We also highlight four challenges in plant-pathogen interactomics with plausible solution(s) for each.


Asunto(s)
Interacciones Huésped-Patógeno , Plantas , Plantas/genética , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/genética
12.
Mol Cell Proteomics ; 22(2): 100496, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36640924

RESUMEN

Transcriptional enhanced associate domain family members 1 to 4 (TEADs) are a family of four transcription factors and the major transcriptional effectors of the Hippo pathway. In order to activate transcription, TEADs rely on interactions with other proteins, such as the transcriptional effectors Yes-associated protein and transcriptional co-activator with PDZ-binding motif. Nuclear protein interactions involving TEADs influence the transcriptional regulation of genes involved in cell growth, tissue homeostasis, and tumorigenesis. Clearly, protein interactions for TEADs are functionally important, but the full repertoire of TEAD interaction partners remains unknown. Here, we employed an affinity purification mass spectrometry approach to identify nuclear interacting partners of TEADs. We performed affinity purification mass spectrometry experiment in parallel in two different cell types and compared a wildtype TEAD bait protein to a nuclear localization sequence mutant that does not localize to the nucleus. We quantified the results using SAINT analysis and found a significant enrichment of proteins linked to DNA damage including X-ray repair cross-complementing protein 5 (XRCC5), X-ray repair cross-complementing protein 6 (XRCC6), poly(ADP-ribose) polymerase 1 (PARP1), and Rap1-interacting factor 1 (RIF1). In cellular assays, we found that TEADs co-localize with DNA damage-induced nuclear foci marked by histone H2AX phosphorylated on S139 (γH2AX) and Rap1-interacting factor 1. We also found that depletion of TEAD proteins makes cells more susceptible to DNA damage by various agents and that depletion of TEADs promotes genomic instability. Additionally, depleting TEADs dampens the efficiency of DNA double-stranded break repair in reporter assays. Our results connect TEADs to DNA damage response processes, positioning DNA damage as an important avenue for further research of TEAD proteins.


Asunto(s)
Daño del ADN , Reparación del ADN , Factores de Transcripción de Dominio TEA , Humanos , Carcinogénesis/metabolismo , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción de Dominio TEA/metabolismo
13.
Anal Biochem ; 663: 115017, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36526023

RESUMEN

Low affinity and transient protein-protein interactions, such as short linear motif (SLiM)-based interactions, require dedicated experimental tools for discovery and validation. Here, we evaluated and compared biotinylated peptide pulldown and protein interaction screen on peptide matrix (PRISMA) coupled to mass-spectrometry (MS) using a set of peptides containing interaction motifs. Eight different peptide sequences that engage in interactions with three distinct protein domains (KEAP1 Kelch, MDM2 SWIB, and TSG101 UEV) with a wide range of affinities were tested. We found that peptide pulldown can be an effective approach for SLiM validation, however, parameters such as protein abundance and competitive interactions can prevent the capture of known interactors. The use of tandem peptide repeats improved the capture and preservation of some interactions. When testing PRISMA, it failed to provide comparable results for model peptides that successfully pulled down known interactors using biotinylated peptide pulldown. Overall, in our hands, we find that albeit more laborious, biotin-peptide pulldown was more successful in terms of validation of known interactions. Our results highlight that the tested affinity-capture MS-based methods for validation of SLiM-based interactions from cell lysates are suboptimal, and we identified parameters for consideration for method development.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Péptidos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Péptidos/química , Espectrometría de Masas/métodos , Cromatografía de Afinidad
14.
Methods Mol Biol ; 2561: 263-277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36399275

RESUMEN

Phosphorylated tau is the main protein present in neurofibrillary tangles, the presence of which is a key neuropathological hallmark of Alzheimer's disease (AD). The toxic effects of phosphorylated tau are likely mediated by interacting proteins; however, methods to identify these interacting proteins comprehensively in human brain tissue are limited. Here, we describe a method that enables the efficient identification of hundreds of proteins that interact with phosphorylated tau (pTau), using affinity purification-mass spectrometry (AP-MS) on human, fresh-frozen brain tissue from donors with AD. Tissue is homogenized using a gentle technique that preserves protein-protein interactions, and co-immunoprecipitation of pTau and its interacting proteins is performed using the PHF1 antibody. The resulting protein interactors are then identified using label-free quantitative liquid chromatography-mass spectrometry (LC-MS)/MS. The Significance Analysis of INTeractome (SAINT) algorithm is used to determine which proteins significantly interact with pTau. This approach enables the detection of an abundance of all 6 isoforms of tau, 23 phosphorylated residues on tau, and 125 significant pTau protein interactors, in human AD brain tissue.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Ovillos Neurofibrilares/metabolismo , Espectrometría de Masas/métodos , Cromatografía de Afinidad , Cromatografía Liquida
15.
J Agric Food Chem ; 70(46): 14679-14692, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36351177

RESUMEN

Garlic is a medicinal plant and spice that has been used for millennia for its health-promoting effects. These medicinal properties are associated with low molecular weight organosulfur compounds, produced following the crushing of garlic cloves. One of these compounds, ajoene, is proposed to act by S-thioallylating cysteine residues on target proteins whose identification in cancer cells holds great promise for understanding mechanistic aspects of ajoene's cancer cell cytotoxicity. To this end, an ajoene analogue (called biotin-ajoene, BA), containing a biotin affinity tag, was designed as an activity-based probe specific for the protein targets of ajoene in MDA-MB-231 breast cancer cells. BA was synthesized via a convergent "click" strategy and found to retain its cytotoxicity against MDA-MB-231 cells compared to ajoene. Widespread biotinylation of proteins was found to occur via disulfide bond formation in a dose-dependent manner, and the biotin-ajoene probe was found to share the same protein targets as its parent compound, ajoene. The biotinylated proteins were affinity-purified from the treated MDA-MB-231 cell lysate using streptavidin-coated magnetic beads followed by an on-bead reduction, alkylation, and digestion to liberate the peptide fragments, which were analyzed by liquid chromatography tandem mass chromatography. A total of 600 protein targets were identified, among which 91% overlapped with proteins with known protein cysteine modification (PCM) sites. The specific sites were enriched for those susceptible to S-glutathionylation (-SSG) (16%), S-sulfhydration (-SSH) (20%), S-sulfenylation (-SOH) (22%), and S-nitrosylation (-SNO) (31%). As target validation, both ajoene and a dansylated ajoene (DP) were found to S-thiolate the pure recombinant forms of glutathione S-transferase pi 1 (GSTP1) and protein disulfide isomerase (PDI), and the ajoene analogue DP was found to be a more potent inhibitor than 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB). Pathway analysis elucidated that ajoene targets functional and signaling pathways that are implicated in cancer cell survival, specifically cellular processes, metabolism, and genetic information processing pathways. The results of this study provide mechanistic insights into the character of the anti-cancer activity of the natural dietary compound ajoene.


Asunto(s)
Neoplasias de la Mama , Ajo , Humanos , Femenino , Proteómica , Cisteína/metabolismo , Biotina , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Disulfuros/farmacología , Disulfuros/química , Sulfóxidos , Ajo/química , Antioxidantes
16.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1453-1463, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239351

RESUMEN

Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern with increasing incidence. The dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin has been used for the treatment of T2DM worldwide. Although sitagliptin has excellent therapeutic outcome, adverse effects are observed. In addition, previous studies have suggested that sitagliptin may have pleiotropic effects other than treating T2DM. These pieces of evidence point to the importance of further investigation of the molecular mechanisms of sitagliptin, starting from the identification of sitagliptin-binding proteins. In this study, by combining affinity purification mass spectrometry (AP-MS) and stable isotope labeling by amino acids in cell culture (SILAC), we discover seven high-confidence targets that can interact with sitagliptin. Surface plasmon resonance (SPR) assay confirms the binding of sitagliptin to three proteins, i. e., LYPLAL1, TCP1, and CCAR2, with binding affinities (K D) ranging from 50.1 µM to 1490 µM. Molecular docking followed by molecular dynamic (MD) simulation reveals hydrogen binding between sitagliptin and the catalytic triad of LYPLAL1, and also between sitagliptin and the P-loop of ATP-binding pocket of TCP1. Molecular mechanics Poisson-Boltzmann Surface Area (MMPBSA) analysis indicates that sitagliptin can stably bind to LYPLAL1 and TCP1 in active sites, which may have an impact on the functions of these proteins. SPR analysis validates the binding affinity of sitagliptin to TCP1 mutant D88A is ~10 times lower than that to the wild-type TCP1. Our findings provide insights into the sitagliptin-targets interplay and demonstrate the potential of sitagliptin in regulating gluconeogenesis and in anti-tumor drug development.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Fosfato de Sitagliptina , Humanos , Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras , Diabetes Mellitus Tipo 2/inducido químicamente , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Fosfato de Sitagliptina/farmacología
17.
Front Mol Biosci ; 9: 975570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225252

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes Coronavirus Disease 2019 (COVID-19), which, since 2019 in China, has rapidly become a worldwide pandemic. The aggressiveness and global spread were enhanced by the many SARS-CoV-2 variants that have been isolated up to now. These mutations affect mostly the viral glycoprotein Spike (S), the capsid protein mainly involved in the early stages of viral entry processes, through the recognition of specific receptors on the host cell surface. In particular, the subunit S1 of the Spike glycoprotein contains the Receptor Binding Domain (RBD) and it is responsible for the interaction with the angiotensin-converting enzyme 2 (ACE2). Although ACE2 is the primary Spike host receptor currently studied, it has been demonstrated that SARS-CoV-2 is also able to infect cells expressing low levels of ACE2, indicating that the virus may have alternative receptors on the host cells. The identification of the alternative receptors can better elucidate the pathogenicity and the tropism of SARS-CoV-2. Therefore, we investigated the Spike S1 interactomes, starting from host membrane proteins of non-pulmonary cell lines, such as human kidney (HK-2), normal colon (NCM460D), and colorectal adenocarcinoma (Caco-2). We employed an affinity purification-mass spectrometry (AP-MS) to pull down, from the membrane protein extracts of all cell lines, the protein partners of the recombinant form of the Spike S1 domain. The purified interactors were identified by a shotgun proteomics approach. The lists of S1 potential interacting proteins were then clusterized according to cellular localization, biological processes, and pathways, highlighting new possible S1 intracellular functions, crucial not only for the entrance mechanisms but also for viral replication and propagation processes.

18.
Cell Rep Methods ; 2(8): 100275, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046620

RESUMEN

In living systems, a complex network of protein-protein interactions (PPIs) underlies most biochemical events. The human protein-protein interactome has been surveyed using yeast two-hybrid (Y2H)- and mass spectrometry (MS)-based approaches such as affinity purification coupled to MS (AP-MS). Despite decades of systematic investigations and collaborative multi-disciplinary efforts, there is no "gold standard" for documenting PPIs. A surprisingly large fraction of the human interactome remains uncharted, which we refer to as the "dark interactome." In this review, we highlight the complexity of the human interactome and discuss the current status of the human reference interactome maps. We discuss why a large proportion of the human interactome has remained refractory to traditional approaches. We propose an experimental model that can enable the identification of the dark interactome in a cell-type-specific manner. We also propose a framework to implement when embarking on studies designed to rigorously identify and characterize protein interactions.


Asunto(s)
Mapeo de Interacción de Proteínas , Proteínas , Humanos , Mapeo de Interacción de Proteínas/métodos , Proteínas/química , Cromatografía de Afinidad/métodos , Saccharomyces cerevisiae/metabolismo
19.
Cell Rep ; 40(1): 111031, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35793621

RESUMEN

EPH receptors (EPHRs) constitute the largest family among receptor tyrosine kinases in humans. They are mainly involved in short-range cell-cell communication events that regulate cell adhesion, migration, and boundary formation. However, the molecular mechanisms by which EPHRs control these processes are less understood. To address this, we unravel EPHR-associated complexes under native conditions using mass-spectrometry-based BioID proximity labeling. We obtain a composite proximity network from EPHA4, -B2, -B3, and -B4 that comprises 395 proteins, most of which were not previously linked to EPHRs. We examine the contribution of several BioID-identified candidates via loss-of-function in an EPHR-dependent cell-segregation assay. We find that the signaling scaffold PAR-3 is required for cell sorting and that EPHRs directly phosphorylate PAR-3. We also delineate a signaling complex involving the C-terminal SRC kinase (CSK), whose recruitment to PAR-3 is dependent on EPHR signals. Our work describes signaling networks by which EPHRs regulate cellular phenotypes.


Asunto(s)
Receptores de la Familia Eph , Transducción de Señal , Proteína Tirosina Quinasa CSK , Comunicación Celular , Programas Informáticos
20.
Comput Struct Biotechnol J ; 20: 2322-2331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615014

RESUMEN

As one of the most studied Apicomplexan parasite Cryptosporidium, Cryptosporidium parvum (C. parvum) causes worldwide serious diarrhea disease cryptosporidiosis, which can be deadly to immunodeficiency individuals, newly born children, and animals. Proteome-wide identification of protein-protein interactions (PPIs) has proven valuable in the systematic understanding of the genome-phenome relationship. However, the PPIs of C. parvum are largely unknown because of the limited experimental studies carried out. Therefore, we took full advantage of three bioinformatics methods, i.e., interolog mapping (IM), domain-domain interaction (DDI)-based inference, and machine learning (ML) method, to jointly predict PPIs of C. parvum. Due to the lack of experimental PPIs of C. parvum, we used the PPI data of Plasmodium falciparum (P. falciparum), which owned the largest number of PPIs in Apicomplexa, to train an ML model to infer C. parvum PPIs. We utilized consistent results of these three methods as the predicted high-confidence PPI network, which contains 4,578 PPIs covering 554 proteins. To further explore the biological significance of the constructed PPI network, we also conducted essential network and protein functional analysis, mainly focusing on hub proteins and functional modules. We anticipate the constructed PPI network can become an important data resource to accelerate the functional genomics studies of C. parvum as well as offer new hints to the target discovery in developing drugs/vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA