Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Med ; 12(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36769483

RESUMEN

X-linked myopia 26 (Myopia 26, MIM #301010), which is caused by the variants of ARR3 (MIM *301770), is characterized by female-limited early-onset high myopia (eo-HM). Clinical characteristics include a tigroid appearance in the fundus and a temporal crescent of the optic nerve head. At present, the limited literature on eo-HM caused by ARR3 mutations shows that its inheritance mode is complex, which brings certain difficulties to pre-pregnancy genetic counseling, pre-implantation genetic diagnosis, and prenatal diagnosis. Here, we investigated the genetic underpinning of a Chinese family with eo-HM. Whole exome sequencing of the proband revealed a novel frameshift mutation in ARR3 (NM_004312, exon10, c.666delC, p. Asn222LysfsTer22). Although the mode of inheritance of the eo-HM family fits the X-linked pattern of ARR3, the phenotypes of three patients deviate from the typical early-onset high myopia. Through X-chromosome inactivation experiments, the patient's different phenotypes can be precisely explained. In addition, this study not only enhanced the correlation between ARR3 and early-onset high myopia but also provided explanations for different phenotypes, which may inspire follow-up studies. Our results enrich the knowledge of the variant spectrum in ARR3 and provide critical information for preimplantation and prenatal genetic testing, diagnosis, and counseling.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35805774

RESUMEN

Arsenic is one of the most prevalent toxic elements in the environment, and its toxicity affects every organism. Arsenic resistance has mainly been observed in microorganisms, and, in bacteria, it has been associated with the presence of the Ars operon. In Saccharomyces cerevisiae, three genes confer arsenic resistance: ARR1, ARR2, and ARR3. Unlike bacteria, in which the presence of the Ars genes confers per se resistance to arsenic, most of the S. cerevisiae isolates present the three ARR genes, regardless of whether the strain is resistant or sensitive to arsenic. To assess the genetic features that make natural S. cerevisiae strains resistant to arsenic, we used a combination of comparative genomic hybridization, whole-genome sequencing, and transcriptomics profiling with microarray analyses. We observed that both the presence and the genomic location of multiple copies of the whole cluster of ARR genes were central to the escape from subtelomeric silencing and the acquisition of resistance to arsenic. As a result of the repositioning, the ARR genes were expressed even in the absence of arsenic. In addition to their relevance in improving our understanding of the mechanism of arsenic resistance in yeast, these results provide evidence for a new cluster of functionally related genes that are independently duplicated and translocated.


Asunto(s)
Arsénico , Arsenitos , Arseniatos/toxicidad , Arsénico/toxicidad , Arsenitos/toxicidad , Hibridación Genómica Comparativa , Operón , Saccharomyces cerevisiae/genética
3.
Front Genet ; 12: 765503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966409

RESUMEN

ARR3 has been associated with X-linked, female-limited, high myopia. However, using exome sequencing (ES), we identified the first high myopia case with hemizygous ARR3-related mutation in a male patient in a Southern Chinese family. This novel truncated mutation (ARR3: c.569C>G, p.S190*) co-segregated with the disease phenotype in affected family members and demonstrated that high myopia caused by ARR3 is not X-linked, female-limited, where a complicated X-linked inheritance pattern may exist. Thus, our case expanded the variant spectrum in ARR3 and provided additional information for genetic counseling, prenatal testing, and diagnosis. Moreover, we characterized the nonsense-mediated decay of the ARR3 mutant mRNA and discussed the possible underlying pathogenic mechanisms.

4.
Orphanet J Rare Dis ; 16(1): 45, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482870

RESUMEN

BACKGROUND: Female-limited early-onset high myopia, also called Myopia-26 is a rare monogenic disorder characterized by severe short sightedness starting in early childhood and progressing to blindness potentially by the middle ages. Despite the X-linked locus of the mutated ARR3 gene, the disease paradoxically affects females only, with males being asymptomatic carriers. Previously, this disease has only been observed in Asian families and has not gone through detailed investigation concerning collateral symptoms or pathogenesis. RESULTS: We found a large Hungarian family displaying female-limited early-onset high myopia. Whole exome sequencing of two individuals identified a novel nonsense mutation (c.214C>T, p.Arg72*) in the ARR3 gene. We carried out basic ophthalmological testing for 18 family members, as well as detailed ophthalmological examination (intraocular pressure, axial length, fundus appearance, optical coherence tomography, visual field- testing) as well as colour vision- and electrophysiology tests (standard and multifocal electroretinography, pattern electroretinography and visual evoked potentials) for eight individuals. Ophthalmological examinations did not reveal any signs of cone dystrophy as opposed to animal models. Electrophysiology and colour vision tests similarly did not evidence a general cone system alteration, rather a central macular dysfunction affecting both the inner and outer (postreceptoral and receptoral) retinal structures in all patients with ARR3 mutation. CONCLUSIONS: This is the first description of a Caucasian family displaying Myopia-26. We present two hypotheses that could potentially explain the pathomechanism of this disease.


Asunto(s)
Potenciales Evocados Visuales , Miopía , Preescolar , Análisis Mutacional de ADN , Electrorretinografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Miopía/genética , Linaje , Tomografía de Coherencia Óptica
5.
Ophthalmic Physiol Opt ; 40(3): 271-280, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32215939

RESUMEN

PURPOSE: To detect variants in 17 known potentially causative genes for non-syndromic myopia in 67 Tujia Chinese patients with early-onset high myopia (eo-HM). METHODS: DNA from 67 unrelated patients with early onset (<7 years old) high myopia (refraction error ≤ -6.00D or axial length > 26 mm) were subjected to whole-exome sequencing (WES). Variants in 17 candidate genes were analysed by multistep bioinformatics analysis. Subsequently, Sanger sequencing was used to verify identified candidate mutations and to assess available family members for co-segregation with myopia. RESULTS: A multistep systematic analysis of variants in 17 potentially causative genes for eo-HM revealed four novel pathogenic mutations and three potential pathogenic mutations in 4 of 17 genes in 7 of 67 (10.4%) probands. The pathogenic group included one missense mutation (c.100G > C, p.Asp34His) and one splice donor mutation (c.989 + 1G >A) in ARR3, one missense mutation (c.995C > A, p.Thr332Lys) in NDUFAF7 and one novel frameshift mutation (c.726dupA, p.Arg243fs*140) in SLC39A5. The potential pathogenic group included two missense mutations (c.3266A > G, p.Tyr1089Cys; c.913G > A, p.Glu305Lys) in ZNF644 and one missense mutation (c.960T > A, p.His320Gln) in NDUFAF7. Sequence changes were confirmed by Sanger sequencing; all had an allele frequency <0.01 in the 1000G, EVS, ExAC and gnomAD databases. Additionally, both the pathogenic and potentially pathogenic mutations were predicted to be damaging by SIFT, Polyphen-2, PROVEAN, MutationTaster2, CADD and REVEL except the p.Tyr1089Cys and p.Glu305Lys changes were predicted to be neutral by PROVEAN. CONCLUSION: Our research provides more evidence to support the hypothesis that mutations in ARR3, SLC39A5 and NDUFAF7 are disease-causing genes for eo-HM and broadens the eo-HM mutation spectrum among different ethnic groups. It also deepens understanding of the contributions of ARR3, SLC39A5, and NDUFAF7 to eo-HM.


Asunto(s)
Mutación , Miopía/genética , Niño , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA