Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Intervalo de año de publicación
1.
Free Radic Biol Med ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39307194

RESUMEN

BACKGROUND: Cerebral ischemia-reperfusion injury (CI/RI) is a complex process leading to neuronal damage and death, with mitophagy implicated in its pathogenesis. However, the significance of mitophagy in CI/RI remains debated. HYPOTHESIS: We hypothesized that TRIM25 reduces ATAD3A expression by ubiquitinating ATAD3A, promoting mitochondrial autophagy via the PINK1/Parkin pathway, and aggravating CI/RI. STUDY DESIGN: Rat middle cerebral artery occlusion (MCAO) followed by reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R) in PC12 cells were used as animal and cell models, respectively. METHODS: To evaluate the success of the CI/R modeling, TTC and HE staining were employed. The determination of serum biochemical indexes was carried out using relative assay kits. The Western Blot analysis was employed to assess the expression of ATAD3A, TRIM25, as well as mitophagy-related proteins (PINK1, Parkin, P62, and LC3II/LC3I). The mRNA levels were detected using QRT-PCR. Mitochondrial membrane potential was assessed through JC-1 staining. Mitosox Red Assay Kit was utilized to measure mitochondrial reactive oxygen species levels in PC12 cells. Additionally, characterization of the mitophagy structure was performed using transmission electron microscopy (TEM). RESULTS: Our findings showed down-regulation of ATAD3A and up-regulation of TRIM25 in both in vivo and in vitro CI/RI models. Various experimental techniques such as Western Blot, JC-1 staining, Mitosox assay, Immunofluorescence assay, and TEM observation supported the occurrence of PINK1/Parkin signaling pathway-mediated mitophagy in both models. ATAD3A suppressed mitophagy, while TRIM25 promoted it during CI/RI injury. Additionally, the results indicated that TRIM25 interacted with and ubiquitinated ATAD3A via the proteasome pathway, affecting ATAD3A protein stability and expression. CONCLUSION: TRIM25 promoted Pink1/Parkin-dependent excessive mitophagy by destabilizing ATAD3A, exacerbating CI/RI. Targeting TRIM25 and ATAD3A may offer therapeutic strategies for mitigating CI/RI and associated neurological damage.

2.
Am J Med Genet A ; : e63647, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877820

RESUMEN

Harel-Yoon syndrome (HAYOS) is a unique neurodevelopmental genetic disorder characterized by hypotonia, spasticity, intellectual disability, hypertrophic cardiomyopathy, and global developmental delay. It primarily results from mutations in the ATAD3A gene, pivotal for mitochondrial function. This report presents a 5-year-old girl with HAYOS harboring a de novo heterozygous variant c.1064G>A; (p.G355D) in ATAD3A. Her clinical profile includes delayed milestones, hypotonia, spastic quadriplegia, and ptosis. Notably, dermatologic anomalies such as hypopigmentation, café au lait macules, and freckling are observed, expanding the known phenotype of HAYOS. The inclusion of dermatologic features challenges our understanding of the syndrome and emphasizes the importance of further research to elucidate the molecular connections between ATAD3A mutations and dermatologic manifestations.

3.
Insect Sci ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616538

RESUMEN

ATAD3A is a mitochondrial membrane protein belonging to the ATPase family that contains the AAA+ domain. It is widely involved in mitochondrial metabolism, protein transport, cell growth, development and other important life processes. It has previously been reported that the deletion of ATAD3A causes growth and development defects in humans, mice and Caenorhabditis elegans. To delve into the mechanism underlying ATAD3A defects and their impact on development, we constructed a Bombyx mori ATAD3A (BmATAD3A) defect model in silkworm larvae. We aim to offer a reference for understanding ATAD3A genetic defects and elucidating the molecular regulatory mechanisms. The results showed that knockout of the BmATAD3A gene significantly affected the weight, survival rate, ATPase production and mitochondrial metabolism of individuals after 24 h of incubation. Combined metabolomics and transcriptomics analysis further demonstrated that BmATAD3A knockout inhibits amino acid biosynthesis through the regulation of mitochondrial ribosomal protein expression. Simultaneously, our findings indicate that BmATAD3A knockout impeded mitochondrial activity and ATPase synthesis and suppressed the mitochondrial oxidative phosphorylation pathway through B. mori mitochondrial ribosomal protein L11 (BmmRpL11). These results provide novel insights into the molecular mechanisms involved in the inhibition of development caused by ATAD3A deficiency, offering a potential direction for targeted therapy in diseases associated with abnormal ATAD3A expression.

4.
Cell Cycle ; 23(3): 233-247, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38551450

RESUMEN

Colorectal cancer (CRC) poses a significant challenge in terms of treatment due to the prevalence of radiotherapy resistance. However, the underlying mechanisms responsible for radio-resistance in CRC have not been thoroughly explored. This study aimed to shed light on the role of human coilin interacting nuclear ATPase protein (hCINAP) in radiation-resistant HT-29 and SW480 CRC cells (HT-29-IR and SW480-IR) and investigate its potential implications. Firstly, radiation-resistant CRC cell lines were established by subjecting HT-29 and SW480 cells to sequential radiation exposure. Subsequent analysis revealed a notable increase in hCINAP expression in radiation-resistant CRC cells. To elucidate the functional role of hCINAP in radio-resistance, knockdown experiments were conducted. Remarkably, knockdown of hCINAP resulted in an elevation of reactive oxygen species (ROS) generation upon radiation treatment and subsequent activation of apoptosis mediated by mitochondria. These observations indicate that hCINAP depletion enhances the radiosensitivity of CRC cells. Conversely, when hCINAP was overexpressed, it was found to enhance the radio-resistance of CRC cells. This suggests that elevated hCINAP expression contributes to the development of radio-resistance. Further investigation revealed an interaction between hCINAP and ATPase family AAA domain containing 3A (ATAD3A). Importantly, ATAD3A was identified as an essential factor in hCINAP-mediated radio-resistance. These findings establish the involvement of hCINAP and its interaction with ATAD3A in the regulation of radio-resistance in CRC cells. Overall, the results of this study demonstrate that upregulating hCINAP expression may improve the survival of radiation-exposed CRC cells. Understanding the intricate molecular mechanisms underlying hCINAP function holds promise for potential strategies in targeted radiation therapy for CRC. These findings emphasize the importance of further research to gain a comprehensive understanding of hCINAP's precise molecular mechanisms and explore its potential as a therapeutic target in overcoming radio-resistance in CRC. By unraveling the complexities of hCINAP and its interactions, novel therapeutic approaches may be developed to enhance the efficacy of radiation therapy and improve outcomes for CRC patients.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Apoptosis , Neoplasias Colorrectales , Técnicas de Silenciamiento del Gen , Tolerancia a Radiación , Especies Reactivas de Oxígeno , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/radioterapia , Tolerancia a Radiación/genética , Apoptosis/efectos de la radiación , Apoptosis/genética , Especies Reactivas de Oxígeno/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , Línea Celular Tumoral , Radiación Ionizante , Mitocondrias/metabolismo , Mitocondrias/efectos de la radiación , Células HT29
5.
Heliyon ; 10(1): e23669, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173481

RESUMEN

Objectives: To describe the clinical feature of a very recently identified phenotype associated with ATAD3A variation. Methods: A neonate with Harel-Yoon syndrome was identified. We describe the proband's clinical and radiological features. The affected newborn and her parents underwent whole-exome sequencing and PCR-Sanger sequencing. Results: Previously reported clinical manifestations were rare in the neonatal period, including unmanageable seizures necessitating the use of multiple drugs, congenital laryngeal stridor, hypotonia, challenges with feeding, corneal opacity, and subsequent demise due to respiratory failure. Molecular investigations have unveiled the presence of a newly identified heterozygous single-base substitution (c.1517A > C; p.Q506P) within the ATAD3A gene. Discussion: This study unveils a novel single-base substitution, thereby expanding the mutation spectrum associated with ATAD3A. Furthermore, the clinical characteristics exhibited during the neonatal phase are comprehensively described, potentially facilitating improved clinical recognition of ATAD3A-associated HAYOS.

6.
Free Radic Biol Med ; 211: 114-126, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092275

RESUMEN

Mitochondrial ATAD3A is an ATPase Associated with diverse cellular Activities (AAA) domain containing enzyme, involved in the structural organization of the inner mitochondrial membrane and of increasing importance in childhood disease. In humans, two ATAD3A paralogs arose by gene duplication during evolution: ATAD3B and ATAD3C. Here we investigate the cellular activities of the ATAD3C paralog that has been considered a pseudogene. We detected unique ATAD3C peptides in HEK 293T cells, with expression similar to that in human tissues, and showed that it is an integral membrane protein that exposes its carboxy-terminus to the intermembrane space. Overexpression of ATAD3C, but not of ATAD3A, in fibroblasts caused a decrease in cell proliferation and oxygen consumption rate, and an increase of cellular ROS. This was due to the incorporation of ATAD3C monomers in ATAD3A complex in the mitochondrial membrane reducing its size. Consistent with a negative regulation of ATAD3A function in mitochondrial membrane organization, ATAD3C expression led to increased accumulation of respiratory chain dimeric CIII in the inner membrane, to the detriment to that assembled in respiratory supercomplexes. Our results demonstrate a negative dominant role of the ATAD3C paralog with implications for mitochondrial OXPHOS function and suggest that its expression regulates ATAD3A in the cell.


Asunto(s)
Adenosina Trifosfatasas , Membranas Mitocondriales , Humanos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Duplicación de Gen , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo
7.
Mol Carcinog ; 63(3): 510-523, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38050826

RESUMEN

Malignant proliferation and abundant angiogenesis are major causes of lung adenocarcinoma (LUAD) with high morbidity and mortality. Therefore, the exploration of the key regulatory mechanisms of malignant proliferation and angiogenesis in LUAD provides an opportunity for the development of targeted precision therapy. In this study, we found that the high expression of ATPase family AAA domain-containing protein 3A (ATAD3A) in LUAD was positively associated with the poor survival of patients, while its high expression was positively associated with the angiogenesis of LUAD. Further knockdown of ATAD3A in LUAD significantly inhibited cell proliferation and suppressed expression of vascular endothelial growth factor A, FGF-2, ANG-1, and TGF-ß. The opposite effect was observed with ATAD3A overexpression. Furthermore, ATAD3A knockdown significantly inhibited tumor growth and angiogenesis in an in vivo subcutaneous xenograft tumor model. Mechanistic studies suggest that ATAD3A may promote signal transducer and activator of transcription 3 activation, a key signal regulating lung cancer cell proliferation and transcriptional secretion of proangiogenic factors. Therefore, targeted inhibition of ATAD3A may be an effective strategy for LUAD therapy, and ATAD3A may be a potential biomarker for predicting malignant progression.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Angiogénesis , Adenocarcinoma del Pulmón/patología , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética
8.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(6): 738-743, 2023 Dec 07.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38105692

RESUMEN

An 11-day-old female neonate was admitted for cough with mouth foaming and feeding difficulties. The laboratory results indicated hyperlactatemia, elevated markers of myocardial injury and inflammation, and high levels of acylcarnitine octanoylcarnitine and decanoylcarnitine in tandem mass spectrometry. Ultrasonography and MRI suggested cardiac insufficiency and hypertrophic cardiomyopathy. Whole exome sequencing showed that both the proband and her elderly sister had a compound heterozygous variant of c.1492dup (p.T498Nfs*13) and c.1376T>C (p.F459S) in the ATAD3A gene, inherited from their father and mother, respectively. The diagnosis of Harel-Yoon syndrome was confirmed. The proband and her sister were born with clinical manifestations of metabolic acidosis, hyperlactatemia, feeding difficulties, elevated markers of myocardial injury as well as cardiac insufficiency, and both died in early infancy.


Asunto(s)
Hiperlactatemia , Humanos , Recién Nacido , Femenino , Anciano , Mutación , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
9.
Cancer Med ; 12(24): 22395-22406, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38018291

RESUMEN

BACKGROUND: Bladder cancer (BCa) is a highly malignant tumor, and if left untreated, it can develop severe hematuria and tumor metastasis, thereby endangering the patient's life. The purpose of this paper was to detect the expression of ATAD3A in BCa and research the relationship between ATAD3A and pathological features of bladder cancer and the prognosis of patients. METHODS: First, the expression of ATAD3A in BCa and normal bladder tissues was analyzed based on the UALCAN and Oncomine public databases. Second, 491 cases of surgically resected bladder cancer specimens and 110 cases of normal adjacent tissues were immunohistochemically stained. The expression of ATAD3A was quantified, and the value and prognosis of ATAD3A as a biomarker of BCa were evaluated. RESULTS: The expression of ATAD3A in bladder cancer tissues was higher than that in normal bladder mucosa. High expression of ATAD3A was correlated with patient age, tumor size, number of tumors, distant metastasis, lymph node metastasis, lymphovascular invasion, and TNM stage (p < 0.05). Overexpression of ATAD3A is closely related to cancer patient survival. The mean survival time of bladder cancer patients with high ATAD3A expression was shorter than those with low ATAD3A levels. According to the relative comparing result, the high ATAD3A expression herald reduced overall survival in BCa patients. CONCLUSIONS: The abnormal overexpression of ATAD3A may be related to the initiation and progress of bladder cancer. The upregulation of ATAD3A can be used as an effective indicator to diagnose bladder cancer and predict tumor progression. Furthermore, the combination of information from public databases and the results of clinical sample analysis can help us better understand the mechanism of action of molecular oncogenes in bladder cancer.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Humanos , Pronóstico , Neoplasias de la Vejiga Urinaria/metabolismo , Biomarcadores , Vejiga Urinaria/patología , Metástasis Linfática , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
10.
Mol Cell ; 83(20): 3740-3753.e9, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832546

RESUMEN

Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.


Asunto(s)
Mitocondrias , eIF-2 Quinasa , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , eIF-2 Quinasa/metabolismo , Citoplasma/metabolismo , Fosforilación , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
11.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37569886

RESUMEN

Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants.

12.
Orphanet J Rare Dis ; 18(1): 92, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095554

RESUMEN

BACKGROUND: Pathogenic variants in the ATAD3A gene lead to a heterogenous clinical picture and severity ranging from recessive neonatal-lethal pontocerebellar hypoplasia through milder dominant Harel-Yoon syndrome up to, again, neonatal-lethal but dominant cardiomyopathy. The genetic diagnostics of ATAD3A-related disorders is also challenging due to three paralogous genes in the ATAD3 locus, making it a difficult target for both sequencing and CNV analyses. RESULTS: Here we report four individuals from two families with compound heterozygous p.Leu77Val and exon 3-4 deletion in the ATAD3A gene. One of these patients was characterized as having combined OXPHOS deficiency based on decreased complex IV activities, decreased complex IV, I, and V holoenzyme content, as well as decreased levels of COX2 and ATP5A subunits and decreased rate of mitochondrial proteosynthesis. All four reported patients shared a strikingly similar clinical picture to a previously reported patient with the p.Leu77Val variant in combination with a null allele. They presented with a less severe course of the disease and a longer lifespan than in the case of biallelic loss-of-function variants. This consistency of the phenotype in otherwise clinically heterogenous disorder led us to the hypothesis that the severity of the phenotype could depend on the severity of variant impact. To follow this rationale, we reviewed the published cases and sorted the recessive variants according to their impact predicted by their type and the severity of the disease in the patients. CONCLUSION: The clinical picture and severity of ATAD3A-related disorders are homogenous in patients sharing the same combinations of variants. This knowledge enables deduction of variant impact severity based on known cases and allows more accurate prognosis estimation, as well as a better understanding of the ATAD3A function.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas , Variación Biológica Poblacional , Mitocondrias , ATPasas Asociadas con Actividades Celulares Diversas/genética , Mitocondrias/genética , Fenotipo , Humanos
13.
Pediatr Neurol ; 143: 79-83, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37031571

RESUMEN

BACKGROUND: Harel-Yoon syndrome is a disease caused by variants in the ATAD3A gene, which manifest as global developmental delay, hypotonia, intellectual disability, and axonal neuropathy. The aim of this study is to summarize the clinical and gene mutation characteristics of a child with refractory epilepsy caused by ATAD3A gene mutation. METHODS: The whole-exome sequencing combined with copy number variation analysis could help to understand the genetic diversity and underlying disease mechanisms in ATAD3A gene mutation. RESULTS: We report a Chinese boy with Harel-Yoon syndrome presenting with refractory epilepsy, hypotonia, global developmental delay, and congenital cataract through whole-exome sequencing. Genetic analysis showed a missense mutation, c.251T>C(p.Thr84Met) in the ATAD3A gene (NM_001170535.1). Further copy number variation analysis identified a novel heterozygous deletion on chromosome1p36.33, which spans ATAD3A exon 1 and 2 regions. Multiple antiepileptic drugs failed to control his seizures. Eventually, seizure was controlled through ketogenic diet (KD). CONCLUSION: Our case shows the potential diagnostic role of whole-exome sequencing in Harel-Yoon syndrome and expands the ATAD3A gene mutation spectrum. Multiple antiepileptic drugs failed to control refractory epilepsy in Harel-Yoon syndrome. The KD therapy may be effective for patients with refractory epilepsy who carry the ATAD3A variants.


Asunto(s)
Dieta Cetogénica , Epilepsia Refractaria , Malformaciones del Sistema Nervioso , Masculino , Niño , Humanos , Hipotonía Muscular/genética , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/genética , Anticonvulsivantes , Variaciones en el Número de Copia de ADN , Convulsiones , Mutación , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
15.
Ophthalmic Genet ; 44(3): 226-233, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36856321

RESUMEN

BACKGROUND: Harel-Yoon syndrome (HAYOS) is a recently described neurodevelopmental disorder characterized by psychomotor delay, truncal hypotonia, appendicular spasticity, and peripheral neuropathy. It is caused by mutations in ATAD3A gene located on chromosome 1p.36.33 whose functions include mitochondrial DNA stabilization, the regulation of mitochondrial fission/fusion, and cholesterol homeostasis. MATERIALS AND METHODS: An 11-year-old male patient of consanguineous Egyptian parents, who present with neuroregression and ptosis along with progressive impaired vision, undergoes complete ophthalmological and neurological examination. Additionally, color fundus photography, fundus autofluorescence (FAF), spectral domain optical coherence tomography (SD-OCT) of both the macula and optic nerve head, full field electroretinogram (ERG), and visual field perimetry were obtained. Whole-exome sequencing and mitochondrial genome sequencing were done in a commercial laboratory from a peripheral blood sample. RESULTS: A novel mutation in ATAD3A gene c.624_644del was identified by whole-exome sequencing consistent with a diagnosis of Harel-Yoon Syndrome (HAYOS). The 11-year-old boy had characteristic features of neurodevelopmental delay, hypotonia, and peripheral neuropathy. However, we documented some novel features as fatiguable ptosis, facial weakness, progressive bulbar palsy, obsessive-compulsive disorder (OCD) in addition to cone system dysfunction. CONCLUSION: Our study reports a novel mutation in ATAD3A gene and expands the clinical spectrum of Harel-Yoon Syndrome. Future research aiming at better understanding of gene function will lead to better genotype-phenotype correlation and could pave the way to more treatment options.


Asunto(s)
Hipotonía Muscular , Malformaciones del Sistema Nervioso , Masculino , Humanos , Mutación , Mitocondrias/genética , Electrorretinografía , Fondo de Ojo , Fenotipo , Tomografía de Coherencia Óptica , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
16.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1009942

RESUMEN

An 11-day-old female neonate was admitted for cough with mouth foaming and feeding difficulties. The laboratory results indicated hyperlactatemia, elevated markers of myocardial injury and inflammation, and high levels of acylcarnitine octanoylcarnitine and decanoylcarnitine in tandem mass spectrometry. Ultrasonography and MRI suggested cardiac insufficiency and hypertrophic cardiomyopathy. Whole exome sequencing showed that both the proband and her elderly sister had a compound heterozygous variant of c.1492dup (p.T498Nfs*13) and c.1376T>C (p.F459S) in the ATAD3A gene, inherited from their father and mother, respectively. The diagnosis of Harel-Yoon syndrome was confirmed. The proband and her sister were born with clinical manifestations of metabolic acidosis, hyperlactatemia, feeding difficulties, elevated markers of myocardial injury as well as cardiac insufficiency, and both died in early infancy.


Asunto(s)
Humanos , Recién Nacido , Femenino , Anciano , Mutación , Hiperlactatemia , ATPasas Asociadas con Actividades Celulares Diversas/química , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética
17.
Proc Natl Acad Sci U S A ; 119(47): e2210730119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36383603

RESUMEN

Mitochondria have their own DNA (mtDNA), which encodes essential respiratory subunits. Under live imaging, mitochondrial nucleoids, composed of several copies of mtDNA and DNA-binding proteins, such as mitochondrial transcription factor A (TFAM), actively move inside mitochondria and change the morphology, in concert with mitochondrial membrane fission. Here we found the mitochondrial inner membrane-anchored AAA-ATPase protein ATAD3A mediates the nucleoid dynamics. Its ATPase domain exposed to the matrix binds directly to TFAM and mediates nucleoid trafficking along mitochondria by ATP hydrolysis. Nucleoid trafficking also required ATAD3A oligomerization via an interaction between the coiled-coil domains in intermembrane space. In ATAD3A deficiency, impaired nucleoid trafficking repressed the clustered and enlarged nucleoids observed in mitochondrial fission-deficient cells resulted in dispersed distribution of small nucleoids observed throughout the mitochondrial network, and this enhanced respiratory complex formation. Thus, mitochondrial fission and nucleoid trafficking cooperatively determine the size, number, and distribution of nucleoids in mitochondrial network, which should modulate respiratory complex formation.


Asunto(s)
Mitocondrias , Proteínas Mitocondriales , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Dinámicas Mitocondriales/genética , ADN Mitocondrial/genética
18.
Mol Genet Metab Rep ; 33: 100912, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36061954

RESUMEN

Biallelic deletions extending into the ATPase family AAA-domain containing protein 3A (ATAD3A) gene lead to infantile lethality with severe pontocerebellar hypoplasia (PCH). However, only 12 such cases have been reported worldwide to date, and the genotype-phenotype correlations are not well understood. We describe cases associated with the same novel biallelic deletions of the ATAD3A and ATAD3B/3A regions in Japanese siblings with severe spinal cord hypoplasia and multiple malformations, including PCH, leading to neonatal death. The ATAD3A protein is essential for normal interaction between mitochondria and endoplasmic reticulum and is important for mitochondrial biosynthesis. The cases were evaluated using whole-genome sequencing for genetic diagnosis of mitochondrial disease. Spinal cord lesions associated with biallelic compound heterozygous deletion extending into the ATAD3A gene have not been reported. In addition, the ATAD3A deletion was 19 base pairs long, which is short compared with those reported previously. This deletion introduced a frameshift, resulting in a premature termination codon, and was expected to be a null allele. The pathological findings of the atrophic spinal cord showed gliosis and tissue destruction of the gray and white matter. We describe spinal cord lesions as a new central nervous system phenotype associated with a biallelic compound heterozygous deletion extending into the ATAD3A gene. Biallelic ATAD3A deletions should be considered in cases of mitochondrial disease with spinal cord hypoplasia and PCH.

19.
Biology (Basel) ; 11(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36138777

RESUMEN

Sideroflexins (SFXN, SLC56) are a family of evolutionarily conserved mitochondrial carriers potentially involved in iron homeostasis. One member of the SFXN family is SFXN1, recently identified as a human mitochondrial serine transporter. However, little is known about the SFXN1 interactome, necessitating a high-throughput search to better characterize SFXN1 mitochondrial functions. Via co-immunoprecipitation followed by shotgun mass spectrometry (coIP-MS), we identified 96 putative SFXN1 interactors in the MCF7 human cell line. Our in silico analysis of the SFXN1 interactome highlights biological processes linked to mitochondrial organization, electron transport chains and transmembrane transport. Among the potential physical partners, ATAD3A and 17ß-HSD10, two proteins associated with neurological disorders, were confirmed using different human cell lines. Nevertheless, further work will be needed to investigate the significance of these interactions.

20.
Dev Dyn ; 251(12): 1982-2000, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36000457

RESUMEN

BACKGROUND: ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear encoded mitochondrial membrane protein that spans inner and outer membrane, and it has been shown to regulate mitochondrial dynamics and cholesterol metabolism. Since the mitochondrial functions have been implicated for osteogenic differentiation, a role of ATAD3A in skeletal development has been investigated. RESULTS: Mesenchyme-specific ATAD3 knockout mice displayed severe defects in skeletal development. Additionally, osteoblast-specific deletion of ATAD3 in mice caused significant reduction in bone mass, while cartilage-specific ATAD3 knockout mice did not show any significant phenotypes. Consistent with these in vivo findings, ATAD3A knockdown impaired mitochondrial morphology and function in calvarial pre-osteoblast cultures, which, in turn, suppressed osteogenic differentiation in vitro. CONCLUSIONS: The current findings suggest that ATAD3A plays a crucial role in mitochondria homeostasis, which is required for osteogenic differentiation during skeletal development.


Asunto(s)
Proteínas Mitocondriales , Osteogénesis , Ratones , Animales , Proteínas Mitocondriales/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Osteogénesis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Osteoblastos/metabolismo , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA