Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010173

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Gotas Lipídicas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Traumatismos de la Médula Espinal , Regulación hacia Arriba , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Microglía/patología , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Gotas Lipídicas/metabolismo , Ratones , Línea Celular , Masculino , Metabolismo de los Lípidos/genética
2.
Biochem Biophys Res Commun ; 712-713: 149955, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640737

RESUMEN

We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Molécula CD68 , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Femenino , Ratones , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo II/genética , PPAR gamma/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Pulmón/metabolismo , Pulmón/patología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Bazo/metabolismo , Trasplante de Médula Ósea , Humanos , Lípidos/sangre
3.
Int J Biol Sci ; 20(5): 1729-1743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481816

RESUMEN

Background: N6-methyladenosine (m6A) is the most common and abundant mRNA modification, playing an essential role in biological processes and tumor development. However, the role of m6A methylation in skin cutaneous melanoma (SKCM) is not yet clear. This study analyzed the expression of m6A-related functional genes in SKCM and aimed to explore the key demethylase ALKBH5 mediated m6A modification and its potential mechanism in human SKCM. Methods: Based on public databases, the m6A-related gene expression landscape in SKCM was portrayed. MeRIP-Seq and RNA-Seq were used to recognize the downstream target of ALKBH5. In vivo and in vitro functional phenotype and rescue functional experiments were performed to explore the mechanism of the ALKBH5-m6A-ABCA1 axis in SKCM. Results: We found ALKBH5 upregulated in SKCM, associated with poor prognosis. ALKBH5 can promote melanoma cell proliferation, colony formation, migration, and invasion and inhibit autophagy in vitro, facilitating tumor growth and metastasis in vivo. We identified ABCA1, a membrane protein that assists cholesterol efflux, as a downstream target of ALKBH5-mediated m6A demethylation. Finally, our data demonstrated that ALKBH5 promoted SKCM via mediating ABCA1 downregulation by reducing ABCA1 mRNA stability in an m6A-dependent manner. Conclusion: Our findings exhibited the functional value of the key demethylase ALKBH5 mediated m6A modification in the progression of SKCM, suggesting the ALKBH5-m6A-ABCA1 axis as a potential therapeutic target in SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Piel , Autofagia/genética , Desmetilación , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Transportador 1 de Casete de Unión a ATP
4.
Br J Haematol ; 204(4): 1483-1494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38031970

RESUMEN

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease. Cellular and systemic lipid metabolism plays a significant role in the regulation of immune cell activities. However, the role of lipoprotein lipids and apolipoproteins in ITP remains elusive. The automatic biochemistry analyser was used to measure the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA-I), apoB, apoE and lipoprotein a [LP(a)]. Genetic variants strongly associated with circulating lipoprotein lipids and apolipoproteins (LDL-C, apoB, TG, HDL-C and apoA-I) were extracted to perform Mendelian randomization (MR) analyses. Finally, drug-target MR and passive ITP mice model was used to investigate the potential druggable targets of ITP. Levels of HDL-C, apoA-I, decreased and LP(a) increased in ITP patients compared with healthy controls. Low HDL-C was causally associated with ITP susceptibility. Through drug-target MR and animal modelling, ABCA1 was identified as a potential target to design drugs for ITP. Our study found that lipid metabolism is related to ITP. The causative association between HDL-C and the risk of ITP was also established. The study provided new evidence of the aetiology of ITP. ABCA1 might be a potential drug target for ITP.


Asunto(s)
Apolipoproteína A-I , Púrpura Trombocitopénica Idiopática , Animales , Ratones , Humanos , Apolipoproteína A-I/genética , LDL-Colesterol , Lípidos , Análisis de la Aleatorización Mendeliana , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/genética , Apolipoproteínas/genética , Triglicéridos , HDL-Colesterol
5.
International Eye Science ; (12): 561-566, 2024.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1012821

RESUMEN

Age-related macular degeneration(ARMD)is a neurodegenerative disease associated with oxidative stress. It is characterized by progressive death of photoreceptors and retinal pigment epithelium(RPE), and is one of the leading causes of irreversible loss of central vision in patients over the age of 65 years old. MicroRNA(miRNA)is a class of regulatory short-chain non-coding RNA that can bind and inhibit multiple gene targets in the same biological pathway. This unique property makes microRNA an ideal target for exploring the pathogenesis, diagnosis and treatment of non-exudative ARMD. Previous studies have found that the pathogenesis of non-exudative ARMD involves age, genetics, environment, oxidative stress, lipid metabolism, autophagy and immunity. However, the exact mechanisms have not been fully clarified. As biomarkers of non-exudative ARMD, miRNA play a role in oxidative stress and lipid metabolism. This article summarizes the role of various miRNA in targeting Nrf2 and HIF-1α to inhibit hypoxia-related angiogenesis signaling, thereby affecting oxidative stress. Additionally, miRNA regulate lipid uptake and the expression of ABCA1 in RPE and macrophages, thereby influencing lipid metabolism. This deepens the understanding of the role of miRNA in oxidative stress and lipid metabolism in non-exudative ARMD, and provides directions for further improving the understanding of the pathogenesis and prevention of non-exudative ARMD.

6.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139111

RESUMEN

It is widely recognized that macrophage cholesterol efflux mediated by the ATP-binding cassette transporter A1 (ABCA1) constitutes the initial and rate-limiting step of reverse cholesterol transport (RCT), displaying a negative correlation with the development of atherosclerosis. Although the transcriptional regulation of ABCA1 has been extensively studied in previous research, the impact of post-translational regulation on its expression remains to be elucidated. In this study, we report an AMP-activated protein kinase (AMPK) agonist called ((2R,3S,4R,5R)-3,4-dihydroxy-5-(6-((3-hydroxyphenyl) amino)-9H-purin-9-yl) tetrahydrofuran-2-yl) methyl dihydrogen phosphate (MP), which enhances ABCA1 expression through post-translational regulation rather than transcriptional regulation. By integrating the findings of multiple experiments, it is confirmed that MP directly binds to AMPK with a moderate binding affinity, subsequently triggering its allosteric activation. Further investigations conducted on macrophages unveil a novel mechanism through which MP modulates ABCA1 expression. Specifically, MP downregulates the Cav1.2 channel to obstruct the influx of extracellular Ca2+, thereby diminishing intracellular Ca2+ levels, suppressing calcium-activated calpain activity, and reducing the interaction strength between calpain and ABCA1. This cascade of events culminates in the deceleration of calpain-mediated degradation of ABCA1. In conclusion, MP emerges as a potentially promising candidate compound for developing agents aimed at enhancing ABCA1 stability and boosting cellular cholesterol efflux and RCT.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Calpaína , Calpaína/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Colesterol/metabolismo , Macrófagos/metabolismo , Proteolisis , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
7.
Nat Prod Bioprospect ; 13(1): 26, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639046

RESUMEN

An undescribed pyrrole acid, 1-(4'-methoxy-4'-oxobutyl)-1 H-pyrrole-2,5-dicarboxylic acid (1) and one known pyrrole acid (2) were isolated from the fruits of Phyllanthus emblica. The structures of these compounds were elucidated via the comprehensive analyses of IR, HRESIMS, 1D and 2D spectroscopic data. A series of biological assays revealed that compounds 1 and 2 could inhibit LPS-induced over-production of nitric oxide (NO), interleukin-6 (IL-6), monocyte chemotactic protein 1 (MCP-1) and tumor necrosis factor-α (TNF-α) by reducing the phosphorylation of extracellular regulated protein kinases (ERK) and c-Jun N-terminal kinases (JNK) in RAW 264.7 cells. Additionally, compounds 1 and 2 were found to reduce lipid deposition and increase the mRNA expression of ATP-binding cassette transporter A1 in oxidized low-density lipoprotein-treated RAW264.7 macrophages.

8.
Eur J Epidemiol ; 38(9): 985-994, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37335386

RESUMEN

Genetic variants in ABCA1 are associated with higher concentrations of high-density lipoprotein (HDL) cholesterol. Higher HDL cholesterol concentrations are observationally and genetically associated with higher risk of age-related macular degeneration (AMD). However, whether amino acid-changing genetic variants in ABCA1 associated with high HDL cholesterol concentrations confer a higher risk of AMD in the general population is currently unknown. We tested this hypothesis. The study included 80,972 individuals (1,370 AMD cases) from the Copenhagen General Population Study (CGPS) and 9,584 individuals (142 AMD cases) from the Copenhagen City Heart Study (CCHS) with 10 to 18 years of follow-up. We created an HDL cholesterol weighted allele score based on amino acid-changing ABCA1 variants with a minor allele frequency above 0.001 and divided it into tertiles. The study included 55% women. Mean age was 58 years. The ABCA1 allele score for the third versus the first tertile was associated with HRs (95% confidence intervals (CIs)) of 1.30 (1.14-1.49) for all-cause AMD, 1.26 (1.06-1.50) for nonneovascular AMD, and 1.31 (1.12-1.53) for neovascular AMD in a multivariable adjusted model. On a continuous scale, higher concentrations of genetically determined HDL cholesterol were associated with higher risk of all-cause AMD, nonneovascular AMD, and neovascular AMD in an age- and sex adjusted model and in a multivariable adjusted model. In conclusion, amino acid-changing genetic variants in ABCA1 associated with higher HDL cholesterol concentrations were also associated with higher risk of AMD, suggesting a role for ABCA1 in AMD pathogenesis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Inhibidores de la Angiogénesis , Degeneración Macular Húmeda , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aminoácidos , HDL-Colesterol , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Transportador 1 de Casete de Unión a ATP/genética
9.
Nanomedicine ; 50: 102672, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37044196

RESUMEN

ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in atherosclerotic formation through mediated cholesterol efflux in macrophage-derived foam cells. In this study, a scavenger receptors AI (SR-AI) targeted theranostic nanoparticles was constructed for atherosclerosis regression via ABCA1 activation in foam cells. ABCA1-upregulator 5242331 and IR780 were encapsulated in PLGA-PEG micelles which were conjugated with SR-AI targeting peptide (PP1) to formulate the nanoparticles (SAU-NPs). Immunostaining revealed that SR-AI was highly expressed both in macrophage foam cells and in atherosclerotic plaque of ApoE-/- mice. The SAU-NPs have shown more active targeting to plaque lesion with higher stability compared with non-SR-AI targeted nanoparticles. The transformation from macrophage to foam cells was inhibited by SAU-NPs carried 5242331. Cholesterol deposition was effectively reduced in foam cells by SAU-NPs through activating the LXRα-ABCA1/ABCG1/SR-BI pathway. In conclusion, theranostic SAU-NPs which carried ABCA1-upregulator 5242331 exert beneficial effects on atherosclerosis regression via LXRα activation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/patología , Transportador 1 de Casete de Unión a ATP/metabolismo , Colesterol/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Medicina de Precisión , Receptores Depuradores de Clase B/metabolismo
10.
Biol Rev Camb Philos Soc ; 98(4): 1160-1183, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36880422

RESUMEN

Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Colesterol/metabolismo , Colesterol/uso terapéutico , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/uso terapéutico , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo
11.
J Pharm Pharmacol ; 75(5): 677-685, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840643

RESUMEN

OBJECTIVES: This study was aimed to evaluate the protective effects of phenylethanoid glycosides extract from Cistanche deserticola against atherosclerosis and its molecular mechanism. METHODS: Total phenylethanoid glycosides were extracted and purified from C. deserticola, and the C. deserticola extract (CDE) was used to treat a mice model of atherosclerosis. KEY FINDINGS: CDE containing 81.00% total phenylethanoid glycosides, with the contents of echinacoside and acteoside being 31.36% and 7.23%, respectively. A 13-week of CDE supplementation (1000 mg/kg body weight/day) significantly reduced atherosclerotic lesions in the aortic sinus and entire aorta in ApoE-/- mice fed with a high-fat diet. In addition, varying doses of CDE (250, 500 and 1000 mg/kg body weight/day) lowered plasma total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels. Transcriptomic analysis of the small intestine revealed the changes enriched in cholesterol metabolic pathway and the activation of Abca1 gene. Further validation using real-time quantitative PCR and western blot confirmed that CDE significantly increased the mRNA levels and protein expressions of ABCA1, LXRα and PPARγ. CONCLUSIONS: Our results demonstrate the beneficial effects of C. deserticola on atherosclerotic plaques and lipid homeostasis, and it is, at least partially, by activating PPARγ-LXRα-ABCA1 pathway in small intestine.


Asunto(s)
Aterosclerosis , Cistanche , Glicósidos , Animales , Ratones , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Transportador 1 de Casete de Unión a ATP/efectos de los fármacos , Transportador 1 de Casete de Unión a ATP/metabolismo , Peso Corporal , Colesterol/metabolismo , Cistanche/química , Glicósidos/química , Glicósidos/farmacología , Ratones Noqueados para ApoE , Extractos Vegetales/química , Extractos Vegetales/farmacología , PPAR gamma/efectos de los fármacos , PPAR gamma/metabolismo , Receptores X del Hígado/efectos de los fármacos , Receptores X del Hígado/metabolismo
12.
Biochem Biophys Res Commun ; 644: 149-154, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36652766

RESUMEN

Doxorubicin (DOX) is extensively used for the treatment of kinds of cancers, and cardiovascular toxicity is one of the side effects. However, it is unclear whether DOX causes impairment of cardiac function by promoting atherosclerosis. Thus, we investigated the role of DOX in regulating the lipid deposition of macrophages and its molecular mechanism. RAW 264.7 cell line was stimulated with DOX in the presence or absence of low-density lipoprotein (LDL). We found that DOX increased miR-33 and reduced ATP binding cassette transporter A1 (ABCA1) protein. Moreover, cholesterol efflux was suppressed by DOX, which was more efficient under a high-cholesterol condition. After transfecting mimics or inhibitors of miR-33 into cells, ABCA1 protein was respectively decreased and increased, and intracellular lipid accumulation was correspondingly regulated. Overall, DOX suppresses the expression of ABCA1 protein by upregulating miR-33, promoting an intracellular lipid deposition in macrophages, which is a sign of early atherosclerosis. This provides new insights for clinical observation and evaluation of the side effects of DOX.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Colesterol/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Aterosclerosis/metabolismo , Doxorrubicina/farmacología
13.
Neurosci Lett ; 793: 136994, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36460235

RESUMEN

Perinatal white matter injury (PWMI) can lead to permanent neurological damage in preterm infants and bring a huge economic burden to their families and society. Liver X receptors (LXRs) are transcription factors that have been confirmed to mediate the myelination process under physiological conditions and are involved in regulating neurogenesis in adult animal models of acute and chronic cerebral ischemia. However, the role of LXRs in PWMI induced by both ischemic and hypoxic stimulation in the immature brain has not been reported. Herein, we investigated the role of LXRs in a neonatal rat model of white matter loss after hypoxia-ischemia (HI) injury through intraperitoneal injection of the LXR agonist T0901317 (T09) 1 day before and 15 min postinjury. The in vivo data showed that T09 treatment significantly facilitated myelination and ameliorated neurological behavior after PWMI. Moreover, T09 enhanced the proliferation of oligodendrocyte lineage cells and reduced microgliosis and astrogliosis in the microenvironment for oligodendrocytes (OLs), maintaining a healthy microenvironment for myelinating OLs. In vitro data suggested that the expression of the myelin-related genes Plp and Cnpase was increased in OLN-93 cells after T09 intervention compared with OLN-93 cells injured by oxygen and glucose deprivation (OGD). In primary mixed astrocytes/microglia cells, T09 also reduced the expression of Il6, Cox2, Tnfa and Il10 that was induced by OGD. Mechanistically, the mRNA expression level and the protein level of ATP binding cassette subfamily A member 1 (Abca1) decreased after HI injury, and the protective effect of T09 might be related to the activation of the LXRß-ABCA1 signaling pathway. Our study revealed the protective role of LXRs in myelination and white matter homeostasis, providing a potential therapeutic option for PWMI.


Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Sustancia Blanca , Animales , Femenino , Embarazo , Ratas , Animales Recién Nacidos , Lesiones Encefálicas/metabolismo , Modelos Animales de Enfermedad , Hidrocarburos Fluorados/farmacología , Hidrocarburos Fluorados/uso terapéutico , Hipoxia/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo , Sustancia Blanca/patología
14.
Cell Biochem Biophys ; 81(1): 151-160, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36251137

RESUMEN

ATP-binding cassette transporter A-I (ABCA1) is an ubiquitously expressed protein whose main function is the transmembrane transport of cholesterol and phospholipids. Synthesis of ABCA1 protein in liver is necessary for high-density lipoprotein (HDL) formation in mammals. Thus, the mechanism of ABCA1 gene expression regulation in hepatocytes are of critical importance. Recently, we have found the insulin-dependent downregulation of other key player in the HDL formation-apolipoprotein A-I gene (J. Cell. Biochem., 2017, 118:382-396). Nothing is known about the role of insulin in the regulation of ABCA1 gene. Here we show for the first time that insulin decreases the mRNA and protein levels of ABCA1 in human hepatoma cell line HepG2. PI3K, p38, MEK1/2, JNK and mTORC1 signaling pathways are involved in the insulin-mediated downregulation of human ABCA1 gene. Transcription factors LXRα, LXRß, FOXO1 and NF-κB are important contributors to this process, while FOXA2 does not regulate ABCA1 gene expression. Insulin causes the decrease in FOXO1, LXRα and LXRß binding to ABCA1 promoter, which is likely the cause of the decrease in the gene expression. Interestingly, the murine ABCA1 gene seems to be not regulated by insulin in hepatocytes (in vitro and in vivo). We suggest that the reason for this discrepancy is the difference in the 5'-regulatory regions of human and murine ABCA1 genes.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Insulina , Receptores X del Hígado , Receptores Nucleares Huérfanos , Animales , Humanos , Ratones , Transportador 1 de Casete de Unión a ATP/genética , Carcinoma Hepatocelular , Línea Celular , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Insulina/metabolismo , Neoplasias Hepáticas , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Mamíferos/metabolismo , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo
15.
Chinese Pharmacological Bulletin ; (12): 1711-1717, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013708

RESUMEN

Aim To examine the effect of peptide P3 on lipid accumulation in RAW264.7 cells and the underlying molecular mechanism. Methods MTT method was used to screen the concentration of peptide P3 and oxidized low density lipoprotein(ox-LDL),and RAW.264.7 cells were induced to form foam cells by ox-LDL with 80 mg·L

16.
Genes (Basel) ; 13(11)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421770

RESUMEN

Chronic hepatitis C (CHC) progression is highly variable and can be influenced by lipid metabolism. The ATP-binding cassette transporter A1 (ABCA1) is involved in lipid metabolism and mediates cholesterol efflux from liver cells. ABCA1 gene polymorphism rs2230808 (R1587K) modulates lipid levels as it is located in an ABCA1 protein domain, which is essential for cholesterol efflux. We aimed to analyze the role of ABCA1 polymorphism R1587K (rs2230808) in modulating the biochemical parameters of lipid metabolism and liver function and its association with liver disease severity, according to gender. A total of 161 CHC patients were clinically, histologically, and biochemically evaluated. Genotyping was performed by melting-curve analysis and statistical analysis by SPSS 24.0. There were significant differences between ABCA1_rs2230808 genotypes and total cholesterol, γGT (γ-glutamyl-transpeptidase), and HCV-RNA. Gender differences: in females, ABCA1_rs2230808 (GG or GA) was associated with higher HCV-RNA serum levels; in males, ABCA1_rs2230808 (GG or GA) was associated with higher γGT, lower total cholesterol, increased risk for γGT ≥ 38 UI/L, and total cholesterol < 4.92 mmol/L. Only in the case of males were higher γGT and lower total cholesterol associated with severe fibrosis and steatosis. Total cholesterol < 4.92 mmol/L also associates with severe necroinflammation. We conclude that ABCA1_rs2230808 is gender-specific. ABCA1_rs2230808 Allele G was associated with different clinical and biochemical parameters, which are related to more severe liver disease.


Asunto(s)
Hepatitis C Crónica , Femenino , Masculino , Humanos , Hepatitis C Crónica/genética , Metabolismo de los Lípidos , Polimorfismo Genético , gamma-Glutamiltransferasa , Índice de Severidad de la Enfermedad , ARN , Colesterol/genética , Transportador 1 de Casete de Unión a ATP/genética
17.
Curr Alzheimer Res ; 19(10): 734-741, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36380407

RESUMEN

BACKGROUND: Over a dozen studies have investigated the effect of the R219K variant in the ATP-binding cassette transporter A1 (ABCA1) gene on the risk of Alzheimer's disease (AD), but the results are conflicting. OBJECTIVE: We performed a systematic review and meta-analysis to comprehensively assess the association between the ABCA1 R219K variant and the risk of AD. METHODS: Studies included in the meta-analysis were obtained by searching PubMed, Web of Science and AlzGene. Review Manager 5.4 was used for meta-analysis. Both the odds ratio (OR) and its 95% confidence interval (CI) were used to evaluate the effect of ABCA1 R219K polymorphism on AD susceptibility. Heterogeneity between the included studies was assessed using I2 statistics and Cochran Qtest. Funnel plots were used to assess publication bias. RESULTS: A total of 14 eligible studies involving 10084 subjects were retrieved from PubMed, Web of Science and AlzGene. Meta-analysis results showed that R219K polymorphism was significantly associated with a decreased risk of AD in Chinese under a recessive model (OR = 0.67; 95% CI = 0.51- 0.88; P = 0.004). CONCLUSION: The present meta-analysis indicated that the KK genotype of R219K polymorphism may act as a protective factor for AD in the Chinese population. Additional studies with larger sample sizes are needed to further confirm this association.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Pueblo Asiatico , Transportador 1 de Casete de Unión a ATP/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética
18.
Exp Cell Res ; 419(1): 113279, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810773

RESUMEN

Cholesterol homeostasis plays an important role in the maintenance of normal body functions. CYP27A1 is a key enzyme known to regulate cholesterol homeostasis, which catalyzes the conversion of cholesterol to 27-HC and has been implicated in the occurrence and metastasis of various cancer types. The present study aimed to explore the regulatory role of CYP27A1 in the development of clear cell renal cell carcinoma (ccRCC). In particular, the effect of CYP27A1 on the proliferation and migration of ccRCC cells was investigated. The construction of a stable 786-O cell line overexpressing CYP27A1/pLVX was mediated by lentiviral infection. The proliferative capacity was assessed using MTT and colony formation. Wound healing assay was used to measure cell migration. Production of intracellular cholesterol and 27-HC was detected by enzyme-linked immunosorbent assay. The LXRs/ABCA1 pathway of cholesterol metabolism regulation was studied by RT-qPCR and Western blotting analysis after cells were treated with stimulation agents of 27-HC or T0901317 and inhibition agents of siRNA or GSK2033. The results revealed that overexpression of CYP27A1 could increase the intracellular production of 27-HC and inhibit the proliferation and migration of 786-O cells. And the treatment of 786-O cells with 27-HC induced a similar effect. CYP27A1/27HC mediated activation of the liver X receptors (LXRs) could up-regulate the expression of ATP-binding cassette transporter A1 (ABCA1), further resulting in the reduction of intracellular cholesterol contents. All of these findings indicated a regulatory role of CYP27A1 in the proliferation and migration of ccRCC, via activating LXRs/ABCA1 to regulate cholesterol homeostasis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Carcinoma de Células Renales , Colestanotriol 26-Monooxigenasa , Neoplasias Renales , Receptores X del Hígado , Transportador 1 de Casete de Unión a ATP/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proliferación Celular , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol , Humanos , Receptores X del Hígado/metabolismo
19.
CNS Neurosci Ther ; 28(7): 1093-1107, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35470961

RESUMEN

OBJECTIVE: We aimed to establish a method to determine whether amyloid-ß (Aß) protein and miR-384 in peripheral blood neural cell adhesion molecule (NCAM)/ATP-binding cassette transporter A1 (ABCA1) dual-labeled exosomes may serve as diagnostic markers for the diagnosis of Alzheimer's disease (AD). METHODS: This was a multicenter study using a two-stage design. The subjects included 45 subjective cognitive decline (SCD) patients, 50 amnesic mild cognitive impairment (aMCI) patients, 40 AD patients, and 30 controls in the discovery stage. The results were validated in the verification stage in 47 SCD patients, 45 aMCI patients, 45 AD patients, and 30 controls. NCAM single-labeled and NCAM/ABCA1 double-labeled exosomes in the peripheral blood were captured and detected by immunoassay. RESULTS: The Aß42, Aß42/40 , Tau, P-T181-tau, and miR-384 levels in NCAM single-labeled and NCAM/ABCA1 double-labeled exosomes of the aMCI and AD groups were significantly higher than those of the SCD, control, and vascular dementia (VaD) groups (all p < 0.05). The Aß42 and miR-384 levels in NCAM/ABCA1 dual-labeled exosomes of the aMCI and AD groups were higher than those of the control and VaD groups (all p < 0.05). The exosomal Aß42, Aß42/40 , Tau, P-T181-tau, and miR-384 levels in peripheral blood were correlated with those in cerebrospinal fluid (all p < 0.05). CONCLUSION: This study, for the first time, established a method that sorts specific surface marker exosomes using a two-step immune capture technology. The plasma NCAM/ABCA1 dual-labeled exosomal Aß42/40 and miR-384 had potential advantages in the diagnosis of SCD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Exosomas , MicroARNs , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Biomarcadores , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/genética , Exosomas/metabolismo , Humanos , MicroARNs/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Fragmentos de Péptidos/metabolismo , Proteínas tau/metabolismo
20.
Biomed Environ Sci ; 35(2): 95-106, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35197174

RESUMEN

OBJECTIVE: This study aimed to investigate the effects of caprylic acid (C8:0) on lipid metabolism and inflammation, and examine the mechanisms underlying these effects in mice and cells. METHODS: Fifty-six 6-week-old male C57BL/6J mice were randomly allocated to four groups fed a high-fat diet (HFD) without or with 2% C8:0, palmitic acid (C16:0) or eicosapentaenoic acid (EPA). RAW246.7 cells were randomly divided into five groups: normal, lipopolysaccharide (LPS), LPS+C8:0, LPS+EPA and LPS+cAMP. The serum lipid profiles, inflammatory biomolecules, and ABCA1 and JAK2/STAT3 mRNA and protein expression were measured. RESULTS: C8:0 decreased TC and LDL-C, and increased the HDL-C/LDL-C ratio after injection of LPS. Without LPS, it decreased TC in mice ( P < 0.05). Moreover, C8:0 decreased the inflammatory response after LPS treatment in both mice and cells ( P < 0.05). Mechanistic investigations in C57BL/6J mouse aortas after injection of LPS indicated that C8:0 resulted in higher ABCA1 and JAK2/STAT3 expression than that with HFD, C16:0 and EPA, and resulted in lower TNF-α, NF-κB mRNA expression than that with HFD ( P < 0.05). In RAW 264.7 cells, C8:0 resulted in lower expression of pNF-κBP65 than that in the LPS group, and higher protein expression of ABCA1, p-JAK2 and p-STAT3 than that in the LPS and LPS+cAMP groups ( P < 0.05). CONCLUSION: Our studies demonstrated that C8:0 may play an important role in lipid metabolism and the inflammatory response, and the mechanism may be associated with ABCA1 and the p-JAK2/p-STAT3 signaling pathway.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/inmunología , Caprilatos/administración & dosificación , Inflamación/tratamiento farmacológico , Janus Quinasa 2/inmunología , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Factor de Transcripción STAT3/inmunología , Transportador 1 de Casete de Unión a ATP/genética , Animales , Caprilatos/química , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Humanos , Inflamación/etiología , Inflamación/inmunología , Inflamación/metabolismo , Janus Quinasa 2/genética , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Factor de Transcripción STAT3/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA