Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.548
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410649, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965041

RESUMEN

Cluster aggregation states are thermodynamically favored at the subnanoscale, for which an inverse growth from nanoparticles to clusters may be realized on subnanometer supports. Herein, we develop Au-polyoxometalate-layered double hydroxide (Au-POM-LDH) sub-1 nm nanosheets (Sub-APL) based on the above strategy, where sub-1 nm Au clusters with negative valence are generated by the in-situ disintegration of Au nanoparticles on POM-LDH supports. Sub-1 nm Au clusters with ultrahigh surface atom ratios exhibit remarkable efficiency for glutathione (GSH) depletion. The closely connected sub-1 nm Au with negative valence and POM hetero-units can promote the separation of hole-electrons, resulting in the enhanced reactive oxygen species (ROS) generation under ultrasound (US). Besides, the reversible redox of Mo in POM is able to deplete GSH and trigger chemodynamic therapy (CDT) simultaneously, further enhancing the oxidative stress. Consequently, the Sub-APL present 2-fold ROS generation under US and 7-fold GSH depletion compared to the discrete Au and POM-LDH mixture. Therefore, the serious imbalance of redox in the TME caused by the sharp increase of ROS and rapid decrease of GSH leads to death of tumor ultimately.

2.
ACS Sens ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954790

RESUMEN

Brain organoids are being recognized as valuable tools for drug evaluation in neurodegenerative diseases due to their similarity to the human brain's structure and function. However, a critical challenge is the lack of selective and sensitive electrochemical sensing platforms to detect the response of brain organoids, particularly changes in the neurotransmitter concentration upon drug treatment. This study introduces a 3D concave electrode patterned with a mesoporous Au nanodot for the detection of electrochemical signals of dopamine in response to drugs in brain organoids for the first time. The mesoporous Au nanodot-patterned film was fabricated using laser interference lithography and electrochemical deposition. Then, the film was attached to a polymer-based 3D concave mold to obtain a 3D concave electrode. Midbrain organoids generated from Parkinson's disease (PD) patient-derived iPSCs with gene mutations (named as PD midbrain organoid) or normal midbrain organoids were positioned on the developed 3D concave electrode. The 3D concave electrode showed a 1.4 times higher electrochemical signal of dopamine compared to the bare gold electrode. And the dopamine secreted from normal midbrain organoids or PD midbrain organoids on the 3D concave electrode could be detected electrochemically. After the treatment of PD midbrain organoids with levodopa, the drug for PD, the increase in dopamine level was detected due to the activation of dopaminergic neurons by the drug. The results suggest the potential of the proposed 3D concave electrode combined with brain organoids as a useful tool for assessing drug efficacy. This sensing system can be applied to a variety of organoids for a comprehensive drug evaluation.

3.
Pediatr Dermatol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982306

RESUMEN

Dermoscopy aids in the diagnosis and management of pigmented growths and disorders of pigmentation in children. However, there is limited literature on the dermoscopic appearance of café-au-lait macules (CALMs) and congenital melanocytic nevi in patients with dark skin. We report two cases of young children with dark skin and many hyperpigmented patches in whom dermoscopy was utilized to accurately diagnose CALMs and facilitate testing for neurofibromatosis.

4.
Nanotechnology ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991504

RESUMEN

Although the photoresponse cut-off wavelength of Si is about 1100 nm due to the Si bandgap energy, the internal photoemission effect (IPE) of the Au/Si junction in Schottky detector can extend the absorption wavelength, which makes it a promising candidate for the Si-based infrared detector. However, due to low light absorption, low photon-electron interaction, and poor electron injection efficiency, the near-infrared light detection efficiency of the Schottky detector is still insufficient. The synergistic effect of Si nano/microstructures with a strong light trapping effect and nanoscale Au films with surface plasmon enhanced absorption may provide an effective solution for improving the detection efficiency. In this paper, a large-area periodic Si microcone array covered by an Au film has successfully been fabricated by one-time dry etching based on the mature polystyrene microspheres lithography technique and vacuum thermal deposition, and its properties for hot electron-based near infrared photodetection are investigated. Optical measurements show that the 20 nm-thick Au covered Si microcone array exhibits a low reflectance and a strong absorption (about 85%) in wide wavelength range (900 - 2500 nm), and the detection responsivity can reach a value as high as 17.1 and 7.0 mA/W at 1200 and 1310 nm under the front illumination, and 35.9 mA/W at 1310 nm under the back illumination respectively. 3D-FDTD simulation results show that the enhanced local electric field in the Au layer distributes near the air/Au interface under the front illumination and close to the Au/Si interface under the back illumination. The back illumination favors the injection of photo-generated hot electrons in Au layer into Si, which can explain the higher responsivity under the back illumination. Our research is expected to promote the practical application of Schottky photodetectors to Si-compatible near infrared photodetectors. .

5.
Fish Shellfish Immunol ; 151: 109753, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977111

RESUMEN

Bimetallic (Au/Ag) nanoparticles (BNPs) have shown enhanced antibacterial activity compared to their monometallic counterparts. Sulfated galactans (SG) are a naturally occurring polymer commonly found in red seaweed Gracilaria fisheri. They are biocompatible and biodegradable and environmentally friendly. In this study, we utilized SG in combination with BNPs to develop composite materials that potentially enhance antibacterial activity against shrimp pathogens Vibrio parahaemolyticus and Vibrio harveyi, compared to BNPs or SG alone. BNPs were coated with sulfated galactan (SGBNPs) and characterized using UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, zeta potential, and transmission electron microscopy (TEM). UV-vis spectroscopy analysis revealed that the surface plasmon peaks of BNPs and SGBNPs appeared at 530 nm and 532 nm, respectively. Zeta potential measurements showed that SGBNPs had a negative charge of -32.4 mV, while the BNPs solution had a positive charge of 38.7 mV. TEM images demonstrated the spherical morphology of both BNPs and SGBNPs with narrow size distributions (3-10 nm). Analysis of the FTIR spectra indicated that SG maintained its backbone structure in SGBNPs, but some functional groups were altered. Notably, SGBNPs showed superior antimicrobial and antibiofilm activities against V. parahaemolyticus and V. harveyi compared to SG and BNPs. Furthermore, treatment with SGBNPs significantly down-regulated the expression of virulence-related genes (toxR, cpsQ, and mfpA) for V. parahaemolyticus 3HP compared to the respective control, bacteria treated with BNPs or SG. Diets supplemented with SGBNPs, BNPs, or SG showed no detrimental impact on the growth of shrimp Penaeus vannamei. Shrimp fed with SGBNPs-supplemented feed showed significantly higher survival rates than those fed with BNPs-supplemented feed when infected with 3HP after being on the supplemented feed for seven days and a subsequent number of fifteen days. These findings collectively demonstrate the benefit of using SG capped Au-Ag BNPs as an antibacterial agent for the prevention and control of Vibrio sp. Infection in shrimp while reducing the risk of environmental contamination.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38952261

RESUMEN

The occurrence of cancer is often closely related to multiple tumor markers, so it is important to develop multitarget detection methods. By the proper design of the input signals and logical operations of DNA logic gates, detection and diagnosis of cancer at different stages can be achieved. For example, in the early stages, specific input signals can be designed to correspond to early specific tumor markers, thereby achieving early cancer detection. In the late stage, logic gates for multitarget detection can be designed to simultaneously detect multiple biomarkers to improve diagnostic accuracy and comprehensiveness. In this work, we constructed a dual-target-triggered DNA logic gate for anchoring DNA tetrahedra, where methylene blue was embedded in the DNA tetrahedra to sensitize ZnO@CdS@Au, achieving ultrasensitive detection of the target substance. We tested the response of AND and OR logic gates to the platform. For AND logic gates, the sensing platform only responds when both miRNAs are present. In the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. Subsequently, we used OR logic gates for miRNA detection. Even if only one target exists, the sensing platform exhibits excellent performance. Similarly, within the concentration range of 10 aM to 10 nM, the photoelectric signal gradually increases with an increase of the target concentration. The minimum detection limit is 1.10 aM. Whether it is the need to detect multiple targets simultaneously or only one of them, we can achieve it by selecting the appropriate logic gate. This strategy holds promising application prospects in fields such as biosensing, medical diagnosis, and environmental monitoring.

7.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951285

RESUMEN

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Asunto(s)
Bencidinas , Colorimetría , Oro , Peróxido de Hidrógeno , Límite de Detección , Platino (Metal) , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Colorimetría/métodos , Oro/química , Platino (Metal)/química , Porosidad , Bencidinas/química , Peróxido de Hidrógeno/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Vancomicina/química , Técnicas Biosensibles/métodos , Catálisis , Humanos
8.
J Colloid Interface Sci ; 675: 369-378, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38972124

RESUMEN

Regulating the electron structure and precise loading sites of metal-active sites within the highly conjugated and porous covalent-triazine frameworks (CTFs) is essential to promoting the nitrogen reduction reaction (NRR) performance for electrocatalytic ammonia (NH3) synthesis under ambient conditions. Herein, experimental method and density functional theory (DFT) calculations were conducted to deeply probe the effect on NRR of the modulation of modulating the electron structure and the loading site of gold nanoparticles (Au NPs) in a two-dimensional (2D) CTF. 2D CTF synthesized using melem and hexaketocyclohexane octahydrate as building blocks (denoted as M-HCO-CTF) served as a robust scaffold for loading Au NPs to form an M-HCO-CTF@AuNP hybrid. DFT results uncovered that well-defined Au sites with tunable local structure were the active site for driving the NRR, which can significantly suppress the conversion of H+ into *H adsorption and enhance the nitrogen (N2) adsorption/activation. The overlapped Au (3d) and *N2 (2p) orbitals lowered the free energy of the rate-determining step to form *NNH, thereby accelerating the NRR. The M-HCO-CTF@AuNPs electrocatalyst exhibited a large NH3 yield rate of 66.3 µg h-1 mg-1cat. and a high Faraday efficiency of 31.4 % at - 0.2 V versus reversible hydrogen electrode in 0.1 M HCl, superior to most reported CTF-based ones. This work can provide deep insights into the modulation of the electron structure of metal atoms within a porous organic framework for artificial NH3 synthesis through NRR.

9.
Bioelectrochemistry ; 160: 108773, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38972159

RESUMEN

A biofunctional immunosensor combining photoelectrochemical (PEC) and electrochemical (EC) was proposed for the quantitative detection of the liver cancer marker alpha-fetoprotein (AFP) in human blood. BiVO4/BiOI-MWCNTs photoactive materials were first prepared on conductive glass FTO, and the photoelectrode was functionalized by chitosan and glutaraldehyde. Then, the AFP capture antibody (Ab1) was successfully modified on the photoelectrode, and the label-free rapid detection of AFP antigen was achieved by PEC. In addition, Au@PdPt nanospheres were also used as a marker for binding to AFP detection antibody (Ab2). Due to the excellent catalytic properties of Au@PdPt in EC reaction, a signal increase in the EC response can be achieved when Ab2 binds to the AFP antigen, which ensures high sensitivity for the detection of AFP. The detection limits of PEC and EC are 0.050 pg/mL and 0.014 pg/mL, respectively. The sensor also possesses good specificity, stability and reproducibility, shows excellent performance in the detection of clinical samples and has good clinical applicability.

10.
Neuro Oncol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975694

RESUMEN

BACKGROUND: The MEK inhibitor, selumetinib, reduces plexiform neurofibroma (PN) in pediatric patients with neurofibromatosis type 1 (NF1). Its safety and efficacy in adults with PN and effectiveness in other NF1manifestations (e.g., neurocognitive function, growth reduction, and café-au-lait spots) are unknown. METHODS: This open-label, phase 2 trial enrolled 90 pediatric or adult NF1 patients with inoperable, symptomatic, or potentially morbid, measurable PN (≥ 3 cm). Selumetinib was administered at doses of 20 or 25 mg/m2 or 50 mg q 12 hrs for 2 years. Pharmacokinetics, PN volume, growth parameters, neurocognitive function, café-au-lait spots, and quality of life (QoL) were evaluated. RESULTS: Fifty-nine children and 30 adults (median age, 16 years; range, 3-47) received an average of 22±5 (4-26) cycles of selumetinib. Eighty-eight (98.9%) out of 89 per-protocol patients showed volume reduction in the target PN (median, 40.8%; 4.2%-92.2%), and 81 (91%) patients showed partial response (≥ 20% volume reduction). The response lasted until cycle 26. Scores of neurocognitive functions (verbal comprehension, perceptual reasoning, processing speed, and full-scale IQ) significantly improved in both pediatric and adult patients (P <0.05). Prepubertal patients showed increases in height score and growth velocity (P <0.05). Café-au-lait spot intensity decreased significantly (P <0.05). Improvements in QoL and pain scores were observed in both children and adults. All adverse events were CTCAE grade 1 or 2 and were successfully managed without drug discontinuation. CONCLUSION: Selumetinib decrease PN volume in the majority of pediatric and adult NF1 patients while also showing efficacy in non-malignant diverse NF1 manifestations.

11.
Small ; : e2403672, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970560

RESUMEN

Real-time polymerase chain reaction (RT-PCR) with fluorescence detection is the gold standard for diagnosing coronavirus disease 2019 (COVID-19) However, the fluorescence detection in RT-PCR requires multiple amplification steps when the initial deoxyribonucleic acid (DNA) concentration is low. Therefore, this study has developed a highly sensitive surface-enhanced Raman scattering-based PCR (SERS-PCR) assay platform using the gold nanoparticle (AuNP)-internalized gold nanodimpled substrate (AuNDS) plasmonic platform. By comparing different sizes of AuNPs, it is observed that using 30 nm AuNPs improves the detection limit by approximately ten times compared to 70 nm AuNPs. Finite-difference time-domain (FDTD) simulations show that multiple hotspots are formed between AuNPs and the cavity surface and between AuNPs when 30 nm AuNPs are internalized in the cavity, generating a strong electric field. With this 30 nm AuNPs-AuNDS SERS platform, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA)-dependent RNA polymerase (RdRp) can be detected in only six amplification cycles, significantly improving over the 25 cycles required for RT-PCR. These findings pave the way for an amplification-free molecular diagnostic system based on SERS.

12.
Small Methods ; : e2400430, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970552

RESUMEN

Selective oxidative etching is one of the most effective ways to prepare hollow nanostructures and nanocrystals with specific exposed facets. The mechanism of selective etching in noble metal nanostructures mainly relies on the different reactivity of metal components and the distinct surface energy of multimetallic nanostructures. Recently, phase engineering of nanomaterials (PEN) offers new opportunities for the preparation of unique heterostructures, including heterophase nanostructures. However, the synthesis of hollow multimetallic nanostructures based on crystal-phase-selective etching has been rarely studied. Here, a crystal-phase-selective etching method is reported to selectively etch the unconventional 4H and 2H phases in the heterophase Au nanostructures. Due to the coating of Pt-based alloy and the crystal-phase-selective etching of 4H-Au in 4H/face-centered cubic (fcc) Au nanowires, the well-defined ladder-like Au@PtAg nanoframes are prepared. In addition, the 2H-Au in the fcc-2H-fcc Au nanorods and 2H/fcc Au nanosheets can also be selectively etched using the same method. As a proof-of-concept application, the ladder-like Au@PtAg nanoframes are used for the electrocatalytic hydrogen evolution reaction (HER) in acidic media, showing excellent performance that is comparable to the commercial Pt/C catalyst.

13.
Biosens Bioelectron ; 262: 116554, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971038

RESUMEN

Bradyarrhythmia, a life-threatening cardiovascular disease, is an increasing burden for the healthcare system. Currently, surgery, implanted device, and drug are introduced to treat the bradyarrhythmia in clinical practice. However, these conventional therapeutic strategies suffer from the invasive surgery, power supply, or drug side effect, respectively, hence developing the alternative therapeutic strategy is necessarily imperative. Here, a convenient and effective strategy to treat the bradyarrhythmia is proposed using near-infrared-triggered Au nanorod (NR) based plasmonic photothermal effect (PPE). Moreover, electrophysiology of cardiomyocytes is dynamically monitored by the integrated biosensing-regulating system during and after the treatment. Cardiomyocyte-based bradyarrhythmia recover rhythmic for a long time by regulating plasmonic photothermal effect. Furthermore, the regulatory mechanism is qualitatively investigated to verify the significant thermal stimulation in the recovery process. This study establishes a reliable platform for long-term recording and evaluation of mild photothermal therapy for bradyarrhythmia in vitro, offering an efficient and non-invasive strategy for the potential clinical applications.

14.
Microbiol Resour Announc ; : e0029324, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990022

RESUMEN

Bacteriophages Uzumaki and Argan infect Arthrobacter globiformis B-2880 isolated from soil samples in Long Island, New York. These bacteriophages have lambda-like morphology with prolate capsid and share 97% gene content similarity. These traits place them in cluster AU6 with other related Arthrobacter phages.

15.
Nanomaterials (Basel) ; 14(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38998771

RESUMEN

Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold-platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized branched gold nanoparticles, with a localized surface plasmon resonance (LSPR) response of around 1000 nm, as a template for platinum deposition. This approach allows precise control over nanoparticle size, the LSPR band, and the branching degree at an ambient temperature, without the need for high temperatures or organic solvents. The resulting AuPt branched nanoparticles not only demonstrate optical activity but also enhanced catalytic properties. To evaluate their catalytic potential, we compared the enzymatic capabilities of gold and gold-platinum nanoparticles by examining their peroxidase-like activity in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Our findings revealed that the incorporation of platinum onto the gold surface substantially enhanced the catalytic efficiency, highlighting the potential of these bimetallic nanoparticles in catalytic applications.

16.
Int J Nanomedicine ; 19: 6981-6997, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005961

RESUMEN

Background: Enterococcus faecalis (E. faecalis) is one of the main pathogens responsible for refractory root canal infections in the teeth and shows resistance against various antibacterial managements. Effective control of E. faecalis infection is a prerequisite for successful treatment of refractory apical periodontitis. This study aimed to analyze the antibacterial activity and mechanisms of Au@Ag nanoparticles (NPs) combined with photothermal therapy (PTT) against the original and Ag+-resistant E. faecalis. Methods: Au@AgNPs with optimal shell thicknesses were synthesized and characterized. The antibacterial activity of Au@AgNPs with PTT against the original or Ag+-resistant E. faecalis was evaluated, and the antibiofilm activity was tested on E. faecalis biofilm on the dentin of teeth. The potential antibacterial mechanisms of Au@AgNPs combined with PTT against E. faecalis have also been studied. Moreover, its influence on dentin microhardness and cytotoxicity was assessed. Results: This study revealed that Au@AgNPs combined with PTT showed enhanced antibacterial and antibiofilm effects, no negative effects on dentin microhardness, and low cytotoxicity toward human periodontal ligament cells (hPDLCs). Moreover, Au@AgNPs combined with PTT effectively inhibited the growth of Ag+-resistant E. faecalis. Its antibacterial effects may be exerted through the release of silver ions (Ag+), destruction of the cell membrane, production of reactive oxygen species (ROS) and inhibition of adenosine triphosphate (ATP) production. Hyperthermia generated by Au@AgNPs with PTT reduced membrane fluidity and enhanced Ag+ sensitivity by downregulating fabF expression. The upregulated expression of heat shock genes demonstrated that the Ag+ released from Au@AgNPs compromised the heat adaptation of E. faecalis. Conclusion: PTT significantly enhanced Ag+ sensitivity of the original and Ag+-resistant E. faecalis. Au@AgNPs combined with PTT may have the potential to be developed as a new antibacterial agent to control E. faecalis infections in teeth.


Asunto(s)
Antibacterianos , Biopelículas , Dentina , Enterococcus faecalis , Oro , Nanopartículas del Metal , Plata , Plata/química , Plata/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Enterococcus faecalis/efectos de los fármacos , Humanos , Oro/química , Oro/farmacología , Nanopartículas del Metal/química , Dentina/química , Dentina/efectos de los fármacos , Biopelículas/efectos de los fármacos , Terapia Fototérmica/métodos , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Rayos Infrarrojos , Especies Reactivas de Oxígeno/metabolismo
17.
Phytochem Anal ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009466

RESUMEN

INTRODUCTION: Screening of novel pancreatic lipase inhibitors from complex natural products is a meaningful task. OBJECTIVES: Through accurately screening and separating pancreatic lipase inhibitors from Clematis tangutica (C. tangutica), to discover new leading compounds for slimming and accelerate the development and utilization of Tibetan medicine resources. METHODS: An integrated strategy that combines affinity ultrafiltration and high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (AU-HPLC-QTOFMS), targeted separation, in vitro validation, and molecular docking was developed to screen pancreatic lipase inhibitors from C. tangutica. The AU-HPLC-QTOFMS technique was performed to fish for the potential active substances. Macroporous resin, preparative liquid chromatography, and high-speed countercurrent chromatography were implemented for the accurate and targeted separation of active compounds. The inhibitory activities of target compounds to pancreatic lipase were detected by the inhibition experiments in vitro. The binding affinities and binding sites were analyzed using molecular docking. RESULTS: A total of eleven kinds of pancreatic lipase inhibitory substances were screened from C. tangutica. Seven triterpenoid saponins were screened for the first time as lipase inhibitors and successfully prepared with purities higher than 97%. Tanguticoside B, clematangoticoside J, hederoside H1, and rutin showed stronger inhibitory effects with IC50 values of 1.539 ± 0.048, 1.661 ± 0.092, 1.793 ± 0.069, and 1.792 ± 0.094 mmol/l. Moreover, they have the lowest ΔG values of -10.84, -9.97, -10.87, and -9.39 kcal/mol to pancreatic lipase. CONCLUSION: The integrated strategy using AU-HPLC-QTOFMS, targeted separation, in vitro validation, and molecular docking was feasible for rapidly screening and directionally isolating pancreatic lipase inhibitors from C. tangutica.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39001807

RESUMEN

Bacterial infection has always posed a severe threat to public health. Gold nanoparticles (Au NPs) exhibit exceptional biocompatibility and hold immense potential in biomedical applications. However, their antibacterial effectiveness is currently unsatisfactory. Herein, a chiral antibacterial agent with high stability was prepared by the modification of Au NPs with d-cysteine with the assistance of polyethylene glycol (PEG). The as-synthesized d-cysteine/PEG-Au NPs (D/P-Au NPs) exhibited a stronger (99.5-99.9%) and more stable (at least 14 days) antibacterial performance against Gram-negative (Escherichia coli and Listeria monocytogenes) and Gram-positive (Salmonella enteritidis and Staphylococcus aureus) bacteria, compared with other groups. The analysis of the antibacterial mechanism revealed that the D/P-Au NPs mainly affected the assembly of ribosomes, the biosynthesis of amino acids and proteins, as well as the DNA replication and mismatch repair, ultimately leading to bacterial death, which is significantly different from the mechanism of reactive oxygen species-activated metallic antibacterial NPs. In particular, the D/P-Au NPs were shown to effectively accelerate the healing of S. aureus-infected wounds in mice to a rate comparable to or slightly higher than that of vancomycin. This work provides a novel approach to effectively design chiral antibacterial agents for bacterial infection treatment.

19.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998333

RESUMEN

In this article, an attempt was made to join DP600 steel and Ti6Al4V titanium alloy sheets by resistance spot-welding (RSW) using an interlayer in the form of Cu and Au layers fabricated through the cold-spraying process. The welded joints obtained by RSW without an interlayer were also considered. The influence of Cu and Au as an interlayer on the resulting microstructure as well as mechanical properties (shear force and microhardness) of the joints were determined. A typical type of failure of Ti6Al4V/DP600 joints produced without the use of an interlayer is brittle fracture. The microstructure of the resulting joint consisted mainly of the intermetallic phases FeTi and Fe2Ti. The microstructure of the Ti6Al4V/Au/DP600 joint contained the intermetallic phases Ti3Au, TiAu, and TiAu4. The intermetallic phases TiCu and FeCu were found in the microstructure of the Ti6Al4V/Cu/DP600 joint. The maximum tensile/shear stress was 109.46 MPa, which is more than three times higher than for a welded joint fabricated without the use of Cu or Au interlayers. It has been observed that some alloying elements, such as Fe, can lower the martensitic transformation temperature, and some, such as Au, can increase the martensitic transformation temperature.

20.
Chemosphere ; : 142834, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004149

RESUMEN

Graphitic carbon nitride mutated with metal nanoparticles has captivated great interest as an effective fluorescent sensor for the detection of harmful ions present in water. In the present work, bulk-gCN was synthesized using melamine as precursor, and further Au-gCN nanocomposite were fabricated via in-situ direct reduction deposition method. The structural, morphological, compositional, stability and optical properties of bulk gCN and Au-gCN nanocomposite were examined using various scattering and spectroscopic techniques such as HRTEM, XPS, XRD and SEM. The synthesized bulk gCN straggles during selectivity studies with different cations and anions because of its uneven surface morphology, however in Au-gCN gold nanoparticles are uniformly distributed on the gCN sheets which results in its enhanced selectivity over bulk gCN. This leads to the fabrication of an optical sensor for Fe3+ and Cr2 ions with limit of detection of 4.62 and 2.77 µM, respectively. The sensing of Fe3+ ions corresponds to the photoinduced electron transfer (PET) mechanism, while the detection of chromate species is associated with an inner filter effect (IFE). The practical applicability of the sensor was also evaluated for different environmental water samples. The high stability, sensitivity, and specificity of Au-gCN nanocomposite make it a potential fluorescent probe for Fe3+ and Cr2 ions in water samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...