Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
RNA Biol ; 21(1): 1-17, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38798162

RESUMEN

Post-transcriptional regulation by RNA binding proteins can determine gene expression levels and drive changes in cancer cell proteomes. Identifying mechanisms of protein-RNA binding, including preferred sequence motifs bound in vivo, provides insights into protein-RNA networks and how they impact mRNA structure, function, and stability. In this review, we will focus on proteins that bind to AU-rich elements (AREs) in nascent or mature mRNA where they play roles in response to stresses encountered by cancer cells. ARE-binding proteins (ARE-BPs) specifically impact alternative splicing, stability, decay and translation, and formation of RNA-rich biomolecular condensates like cytoplasmic stress granules (SGs). For example, recent findings highlight the role of ARE-BPs - like TIAR and HUR - in chemotherapy resistance and in translational regulation of mRNAs encoding pro-inflammatory cytokines. We will discuss emerging evidence that different modes of ARE-BP activity impact leukaemia and lymphoma development, progression, adaptation to microenvironment and chemotherapy resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Hematológicas , Proteínas de Unión al ARN , Humanos , Resistencia a Antineoplásicos/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neoplasias Hematológicas/tratamiento farmacológico , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/genética , Elementos Ricos en Adenilato y Uridilato , Regulación Neoplásica de la Expresión Génica , Animales , ARN Mensajero/metabolismo , ARN Mensajero/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Estabilidad del ARN , Unión Proteica
2.
Biochem Biophys Res Commun ; 722: 150152, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795452

RESUMEN

MicroRNAs (miRNAs) can positively regulate gene expression through an unconventional RNA activation mechanism involving direct targeting 3' untranslated regions (UTRs). Our prior study found miR-93-5p activates mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in hepatocellular carcinoma (HCC) via its 3'UTR. However, the underlying mechanism remains elusive. Here, we identified two candidate AU-rich element (ARE) motifs (ARE1 and ARE2) adjacent to the miR-93-5p binding site located within the MAP3K2 3'UTR using AREsite2. Luciferase reporter and translation assays validated that only ARE2 participated in MAP3K2 activation. Integrative analysis revealed that human antigen R (HuR), an ARE2-associated RNA-binding protein (RBP), physically and functionally interacted with the MAP3K2 3'UTR. Consequently, an HuR-ARE2 complex was shown to facilitate miR-93-5p-mediated upregulation of MAP3K2 expression. Furthermore, bioinformatics analysis and studies of HCC cells and specimens highlighted an oncogenic role for HuR and positive HuR-MAP3K2 expression correlation. HuR is also an enhancing factor in the positive feedback circuit comprising miR-93-5p, MAP3K2, and c-Jun demonstrated in our prior study. The newly identified HuR-ARE2 involvement enriches the mechanism of miR-93-5p-driven MAP3K2 activation and suggests new therapeutic strategies warranted for exploration in HCC.


Asunto(s)
Regiones no Traducidas 3' , Carcinoma Hepatocelular , Proteína 1 Similar a ELAV , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MAP Quinasa Quinasa Quinasa 2 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Regiones no Traducidas 3'/genética , MAP Quinasa Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa Quinasa 2/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Línea Celular Tumoral , Biosíntesis de Proteínas
3.
J Dent Sci ; 19(1): 154-161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38303892

RESUMEN

Background/purpose: The RNA-binding protein human antigen R (HuR) recognizes AU-rich elements in the 3'-untranslated regions of mRNA. The expression of cytoplasmic HuR is related to the malignancy of many carcinomas. The aim of this study is investigation of effect of HuR knockdown for invasive activity of oral carcinoma. Materials and methods: Proliferation, invasion, real-time PCR, and reporter gene assays were performed to confirm that the knockdown of HuR downregulates the invasive activity of cancer cells. Immunohistochemical staining was performed for high invasive carcinoma, squamous cell carcinoma (SCC) and low invasive carcinoma, verrucous carcinoma (VC), to determine if the localization of cytoplasmic HuR is related to matrix metalloproteinase-1 (MMP-1) expression. Results: Invasive activity was significantly lower in HuR knockdown cancer cells than in control cells. A luciferase assay revealed that HuR knockdown inactivated the promoter activity of the MMP-1 gene. The mRNA levels of the transcription factors required for MMP-1 expression, including c-fos and c-jun, were decreased in HuR knockdown cancer cells. Immunohistochemical analysis revealed the level of cytoplasmic HuR and MMP-1 in invasive carcinoma to be higher than in low invasive cancer. HuR induced MMP-1 expression in the invasive front of most SCC cases. Conclusion: HuR knockdown attenuated the invasive activity of cancer cells by decreasing the expression of the MMP-1, at least partially. HuR localization may help determine the invasive phenotype of cancer cells and inhibit cancer cell invasion. Furthermore, in oral SCC, HuR may be related to invasive activity through the expression of MMP-1.

4.
Oncol Lett ; 26(4): 427, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37720672

RESUMEN

Silencing XB130 inhibits cell proliferation and epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC), suggesting that downregulating XB130 expression may impede NSCLC progression. However, the molecular mechanism underlying the regulation of XB130 expression remains unclear. In the present study, the role of the 3'-untranslated region (3'-UTR) in the regulation of XB130 expression was investigated. Recombinant psiCHECK-2 vectors with wild-type, truncated, or mutant XB130 3'-UTR were constructed, and the effects of these insertions on reporter gene expression were examined using a dual-luciferase reporter assay and reverse transcription-quantitative PCR. Additionally, candidate proteins that regulated XB130 expression by binding to critical regions of the XB130 3'-UTR were screened for using an RNA pull-down assay, followed by mass spectrometry and western blotting. The results revealed that insertion of the entire XB130 3'-UTR (1,218 bp) enhanced reporter gene expression. Positive regulatory elements were primarily found in nucleotides 113-989 of the 3'-UTR, while negative regulatory elements were found in the 1-112 and 990-1,218 regions of the 3'-UTR. Deletion analyses identified nucleotides 113-230 and 503-660 of the 3'-UTR as two major fragments that likely promote XB130 expression by increasing mRNA stability and translation rate. Additionally, a U-rich element in the 970-1,053 region of the 3'-UTR was identified as a negative regulatory element that inhibited XB130 expression by suppressing translation. Furthermore, seven candidate proteins that potentially regulated XB130 expression by binding to the 113-230, 503-660, and 970-1,053 regions of the 3'-UTR were identified, shedding light on the regulatory mechanism of XB130 expression. Collectively, these results suggested that complex sequence integrations in the mRNA 3'-UTR variably affected XB130 expression in NSCLC cells.

5.
ACS Synth Biol ; 12(10): 2827-2833, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37708031

RESUMEN

RNA-protein interactions are essential nodes of cellular regulatory circuits and play critical roles in normal physiology and disease. However, the precise roles of individual RNA-protein interactions remain elusive. Here we report a method for precise interference of endogenous RNA interacting with the RNA binding protein (RBP). TTP is an RBP that recognizes the AU-rich element (ARE) of mRNA via the binding domain TZF and represses gene expression. We engineer Cas13b, a class 2 type VI CRISPR-Cas endonuclease that exclusively targets RNA, to direct the peptide of TZF to the binding site and compete with endogenous TTP. We show that this tool specifically interferes with TTP interacting with the PIM1 and IL-2 3' UTR under the guidance of the gRNA specific for the AREs. Further, precise interference with the TTP-PIM1 interaction exerts a distinct effect on cell proliferation compared to transcriptome-wide interference. Thus, our work establishes a tool for deep understanding of RNA-RBP interactions.


Asunto(s)
Sistemas CRISPR-Cas , ARN , Sistemas CRISPR-Cas/genética , ARN/genética , ARN Mensajero/metabolismo , Interferencia de ARN , Péptidos/metabolismo
6.
FASEB J ; 37(8): e23100, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37462673

RESUMEN

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the proliferation and differentiation of granulocyte and macrophage precursors. The mouse gene-encoding GM-CSF, Csf2, is regulated at both transcriptional and post-transcriptional levels. An adenine-uridine-rich element (ARE) within the 3'-untranslated region of Csf2 mRNA was shown in cell transfection studies to confer instability on this transcript. To explore the physiological importance of this element in an intact animal, we generated mice with a knock-in deletion of the 75-nucleotide ARE. Mice heterozygous for this ARE deletion developed severe respiratory distress and death within about 12 weeks of age. There was dense infiltration of lung alveolar spaces by crystal-containing macrophages. Increased stability of Csf2 mRNA was confirmed in bone marrow-derived macrophages, and elevated GM-CSF levels were observed in serum and lung. These mice did not exhibit notable abnormalities in blood or bone marrow, and transplantation of bone marrow from mutant mice into lethally irradiated WT mice did not confer the pulmonary phenotype. Mice with a conditional deletion of the ARE restricted to lung type II alveolar cells exhibited an essentially identical lethal lung phenotype at the same ages as the mice with the whole-body deletion. In contrast, mice with the same conditional ARE deletion in myeloid cells, including macrophages, exhibited lesser degrees of macrophage infiltration into alveolar spaces much later in life, at approximately 9 months of age. Post-transcriptional Csf2 mRNA stability regulation in pulmonary alveolar epithelial cells appears to be essential for normal physiological GM-CSF secretion and pulmonary macrophage homeostasis.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neumonía , Animales , Ratones , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Neumonía/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
7.
Front Immunol ; 14: 1192028, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483631

RESUMEN

Introduction: The RNA-binding protein AU-rich-element factor-1 (AUF-1) participates to posttranscriptional regulation of genes involved in inflammation and cellular senescence, two pathogenic mechanisms of chronic obstructive pulmonary disease (COPD). Decreased AUF-1 expression was described in bronchiolar epithelium of COPD patients versus controls and in vitro cytokine- and cigarette smoke-challenged human airway epithelial cells, prompting the identification of epithelial AUF-1-targeted transcripts and function, and investigation on the mechanism of its loss. Results: RNA immunoprecipitation-sequencing (RIP-Seq) identified, in the human airway epithelial cell line BEAS-2B, 494 AUF-1-bound mRNAs enriched in their 3'-untranslated regions for a Guanine-Cytosine (GC)-rich binding motif. AUF-1 association with selected transcripts and with a synthetic GC-rich motif were validated by biotin pulldown. AUF-1-targets' steady-state levels were equally affected by partial or near-total AUF-1 loss induced by cytomix (TNFα/IL1ß/IFNγ/10 nM each) and siRNA, respectively, with differential transcript decay rates. Cytomix-mediated decrease in AUF-1 levels in BEAS-2B and primary human small-airways epithelium (HSAEC) was replicated by treatment with the senescence- inducer compound etoposide and associated with readouts of cell-cycle arrest, increase in lysosomal damage and senescence-associated secretory phenotype (SASP) factors, and with AUF-1 transfer in extracellular vesicles, detected by transmission electron microscopy and immunoblotting. Extensive in-silico and genome ontology analysis found, consistent with AUF-1 functions, enriched RIP-Seq-derived AUF-1-targets in COPD-related pathways involved in inflammation, senescence, gene regulation and also in the public SASP proteome atlas; AUF-1 target signature was also significantly represented in multiple transcriptomic COPD databases generated from primary HSAEC, from lung tissue and from single-cell RNA-sequencing, displaying a predominant downregulation of expression. Discussion: Loss of intracellular AUF-1 may alter posttranscriptional regulation of targets particularly relevant for protection of genomic integrity and gene regulation, thus concurring to airway epithelial inflammatory responses related to oxidative stress and accelerated aging. Exosomal-associated AUF-1 may in turn preserve bound RNA targets and sustain their function, participating to spreading of inflammation and senescence to neighbouring cells.


Asunto(s)
Células Epiteliales , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Senescencia Celular/genética , Células Epiteliales/metabolismo , Epitelio/metabolismo , Inflamación/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
8.
Pathol Res Pract ; 245: 154441, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37060820

RESUMEN

BACKGROUND: The target genes of AU-rich Element RNA-binding Protein 1 (AUF1), which is an RNA binding protein, and its role in the progression of hepatocellular carcinoma (HCC) is still elusive. This study aims to investigate the biological function and the underlying target genes of AUF1 in HCC. METHODS: RNA sequencing data and the Liver Cancer Institute (LCI) database were used to screen candidate targets of AUF1. LCI database, TCGA database, and a retrospective HCC cohort were used to investigate the correlation between AUF1 and alpha-fetoprotein (AFP) and their prognostic values in HCC patients. Huh-7, HepG2, and HepAD38 cell lines were used to investigate the underlying mechanism of AUF1 regulating the AFP expression. Cell Counting Kit-8, colony formation, EdU incorporation, and flow cytometry assays were performed to detect the effect of AUF1-AFP axis on the progression and doxorubicin resistance of HCC cells. RESULTS: A combined analysis of the transcriptome data from Huh-7 cells after knockdown of AUF1 and gene expression data from LCI database revealed that AFP was the most significantly downregulated gene after AUF1 depletion. AUF1 expression was positively associated with AFP expression in HCC tissues and the high expression of both AUF1 and AFP were correlated with a worse prognosis in HCC patients of LCI and TCGA databases, as well as our retrospective cohort. Mechanistically, AUF1 bound to the 3' untranslation region (UTR) of AFP mRNA to enhance the mRNA stability of AFP, thereby upregulating AFP. Functional tests showed that AFP knockdown inhibited tumor growth and doxorubicin resistance of HCC cells induced by AUF1. CONCLUSIONS: AFP may be an important target gene of AUF1. AUF1 promoted HCC progression and doxorubicin resistance by upregulating AFP expression via increasing its mRNA stability.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/metabolismo , Carcinoma Hepatocelular/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Hepáticas/patología , Estudios Retrospectivos
9.
Int Immunol ; 35(8): 361-375, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086201

RESUMEN

Activation-induced cytidine deaminase (AID)-dependent DNA cleavage is the initial event of antibody gene-diversification processes such as class switch recombination (CSR) and somatic hypermutation (SHM). We previously reported the requirement of an AID-dependent decrease of topoisomerase 1 (Top1) for efficient DNA cleavage, but the underlying molecular mechanism has remained elusive. This study focuses on HuR/ELAVL1, a protein that binds to AU-rich elements in RNA. HuR-knockout (KO) CH12 cells derived from murine B lymphoma cells were found to have lower CSR and hypermutation efficiencies due to decreased AID-dependent DNA cleavage levels. The HuR-KO CH12 cells do not show impairment in cell cycles and Myc expression, which have been reported in HuR-reduced spleen B cells. Furthermore, drugs that scavenge reactive oxygen species (ROS) do not rescue the lower CSR in HuR-KO CH12 cells, meaning that ROS or decreased c-Myc protein amount is not the reason for the deficiencies of CSR and hypermutation in HuR-KO CH12 cells. We show that HuR binds to Top1 mRNA and that complete deletion of HuR abolishes AID-dependent repression of Top1 protein synthesis in CH12 cells. Additionally, reduction of CSR to IgG3 in HuR-KO cells is rescued by knockdown of Top1, indicating that elimination of the AID-dependent Top1 decrease is the cause of the inefficiency of DNA cleavage, CSR and hypermutation in HuR-KO cells. These results show that HuR is required for initiation of antibody diversification and acquired immunity through the regulation of AID-dependent DNA cleavage by repressing Top1 protein synthesis.


Asunto(s)
Anticuerpos , Citidina Desaminasa , ADN-Topoisomerasas de Tipo I , Proteína 1 Similar a ELAV , Cambio de Clase de Inmunoglobulina , Hipermutación Somática de Inmunoglobulina , Citidina Desaminasa/metabolismo , Animales , Ratones , Proteína 1 Similar a ELAV/metabolismo , ADN-Topoisomerasas de Tipo I/metabolismo , Línea Celular Tumoral , Anticuerpos/genética , Linfocitos B/inmunología , Ratones Endogámicos C57BL , Técnicas de Silenciamiento del Gen
10.
Lab Invest ; 103(6): 100125, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889542

RESUMEN

Alternative polyadenylation (APA) is emerging as a major posttranscriptional mechanism for gene regulation in cancer. A prevailing hypothesis is that shortening of the 3' untranslated region (3'UTR) increases oncoprotein expression because of the loss of miRNA-binding sites (MBSs). We showed that the longer 3'UTR is associated with a more advanced tumor stage in patients with clear cell renal cell carcinoma (ccRCC). More surprisingly, 3'UTR shortening is correlated with better overall survival in patients with ccRCC. Furthermore, we identified a mechanism by which longer transcripts lead to increased oncogenic protein and decreased tumor-suppressive protein expression compared to the shorter transcripts. In our model, shortening of 3'UTRs by APA may increase the mRNA stability of the majority of the potential tumor-suppressor genes due to the loss of MBSs and AU-rich elements (AREs). Unlike potential tumor-suppressor genes, the potential oncogenes display much lower MBS and ARE density and globally much higher m6A density in distal 3'UTRs. As a result, 3'UTRs shortening decreases the mRNA stability of potential oncogenes and enhances the mRNA stability of potential tumor-suppressor genes. Our findings highlight the cancer-specific pattern of APA regulation and extend our understanding of the mechanism of APA-mediated 3'UTR length changes in cancer biology.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Poliadenilación/genética , Regiones no Traducidas 3'/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Renales/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Oncogénicas/genética , Neoplasias Renales/genética , Pronóstico
11.
Glia ; 71(3): 485-508, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36380708

RESUMEN

A major hallmark of neuroinflammation is the activation of microglia and astrocytes with the induction of inflammatory mediators such as IL-1ß, TNF-α, iNOS, and IL-6. Neuroinflammation contributes to disease progression in a plethora of neurological disorders ranging from acute CNS trauma to chronic neurodegenerative disease. Posttranscriptional pathways of mRNA stability and translational efficiency are major drivers for the expression of these inflammatory mediators. A common element in this level of regulation centers around the adenine- and uridine-rich element (ARE) which is present in the 3' untranslated region (UTR) of the mRNAs encoding these inflammatory mediators. (ARE)-binding proteins (AUBPs) such as Human antigen R (HuR), Tristetraprolin (TTP) and KH- type splicing regulatory protein (KSRP) are key nodes for directing these posttranscriptional pathways and either promote (HuR) or suppress (TTP and KSRP) glial production of inflammatory mediators. This review will discuss basic concepts of ARE-mediated RNA regulation and its impact on glial-driven neuroinflammatory diseases. We will discuss strategies to target this novel level of gene regulation for therapeutic effect and review exciting preliminary studies that underscore its potential for treating neurological disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Enfermedades Neurodegenerativas , Humanos , ARN/metabolismo , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/metabolismo , Astrocitos/metabolismo , Enfermedades del Sistema Nervioso Central/genética , Enfermedades del Sistema Nervioso Central/terapia , Enfermedades del Sistema Nervioso Central/metabolismo , Mediadores de Inflamación/metabolismo
12.
Biomedicines ; 10(3)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35327448

RESUMEN

Prostate cancer (PCa) is the major cause of cancer-related death among aging men worldwide. Recent studies have suggested that calreticulin (CRT), a multifunctional chaperon protein, may play an important role in the regulation of PCa tumorigenesis and progression. However, the underlying mechanisms are still unclear. Integrin is an important regulator of cancer metastasis. Our previous study demonstrated that in J82 bladder cancer cells, CRT affects integrin activity through FUBP-1-FUT-1-dependent fucosylation, rather than directly affecting the expression of ß1-integrin itself. However, whether this regulatory mechanism is conserved among different cell types remains to be determined. Herein, we attempted to determine the effects of CRT on ß1-integrin in human prostate cancer PC-3 cells. CRT expression was suppressed in PC-3 cells through siRNA treatment, and then the expression levels of FUT-1 and ß1-integrin were monitored through RT-PCR. We found that knockdown of CRT expression in PC-3 cells significantly affected the expression of ß1-integrin itself. In addition, the lower expression level of ß1-integrin was due to affecting the mRNA stability. In contrast, FUT-1 expression level was not affected by knockdown of CRT. These results strongly suggested that CRT regulates cellular behavior differently in different cell types. We further confirmed that CRT directly binds to the 3'UTR of ß1-integrin mRNA by EMSA and therefore affects its stability. The suppression of CRT expression also affects PC-3 cell adhesion to type I collagen substrate. In addition, the levels of total and activated ß1-integrin expressed on cell surface were both significantly suppressed by CRT knockdown. Furthermore, the intracellular distribution of ß1-integrin was also affected by lowering the expression of CRT. This change in distribution is not lysosomal nor proteosomal pathway-dependent. The treatment of fucosydase significantly affected the activation of surface ß1-integrin, which is conserved among different cell types. These results suggested that CRT affects the expression of ß1-integrin through distinct regulatory mechanisms.

13.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34849835

RESUMEN

AU-rich elements (AREs) are 3' UTR cis-regulatory elements that regulate the stability of mRNAs. Consensus ARE motifs have been determined, but little is known about how differences in 3' UTR sequences that conform to these motifs affect their function. Here, we use functional annotation of sequences from 3' UTRs (fast-UTR), a massively parallel reporter assay (MPRA), to investigate the effects of 41,288 3' UTR sequence fragments from 4653 transcripts on gene expression and mRNA stability in Jurkat and Beas2B cells. Our analyses demonstrate that the length of an ARE and its registration (the first and last nucleotides of the repeating ARE motif) have significant effects on gene expression and stability. Based on this finding, we propose improved ARE classification and concomitant methods to categorize and predict the effect of AREs on gene expression and stability. Finally, to investigate the advantages of our general experimental design we examine other motifs including constitutive decay elements (CDEs), where we show that the length of the CDE stem-loop has a significant impact on steady-state expression and mRNA stability. We conclude that fast-UTR, in conjunction with our analytical approach, can produce improved yet simple sequence-based rules for predicting the activity of human 3' UTRs.


Asunto(s)
Regulación de la Expresión Génica , Estabilidad del ARN , Regiones no Traducidas 3' , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
14.
Cells ; 10(7)2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34359885

RESUMEN

Protein synthesis is tightly regulated at each step of translation. In particular, the formation of the basic cap-binding complex, eukaryotic initiation factor 4F (eIF4F) complex, on the 5' cap structure of mRNA is positioned as the rate-limiting step, and various cis-elements on mRNA contribute to fine-tune spatiotemporal protein expression. The cis-element on mRNAs is recognized and bound to the trans-acting factors, which enable the regulation of the translation rate or mRNA stability. In this review, we focus on the molecular mechanism of how the assembly of the eIF4F complex is regulated on the cap structure of mRNAs. We also summarize the fine-tuned regulation of translation initiation by various trans-acting factors through cis-elements on mRNAs.


Asunto(s)
Proteínas Argonautas/genética , Factor 4F Eucariótico de Iniciación/genética , Iniciación de la Cadena Peptídica Traduccional , Proteínas de Unión a Poli(A)/genética , Caperuzas de ARN/genética , Factores de Transcripción/genética , Animales , Proteínas Argonautas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteína 4 Similar a ELAV/genética , Proteína 4 Similar a ELAV/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Humanos , Mamíferos , MicroARNs/genética , MicroARNs/metabolismo , Poli A/genética , Poli A/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Complejo Silenciador Inducido por ARN/genética , Complejo Silenciador Inducido por ARN/metabolismo , Factores de Transcripción/metabolismo
15.
Front Immunol ; 12: 711633, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276705

RESUMEN

Post-transcriptional regulation is involved in the regulation of many inflammatory genes. Zinc finger protein 36 (ZFP36) family proteins are RNA-binding proteins involved in messenger RNA (mRNA) metabolism pathways. The ZFP36 family is composed of ZFP36 (also known as tristetraprolin, TTP), ZFP36L1, ZFP36L2, and ZFP36L3 (only in rodents). The ZFP36 family proteins contain two tandemly repeated CCCH-type zinc-finger motifs, bind to adenine uridine-rich elements in the 3'-untranslated regions (3' UTR) of specific mRNA, and lead to target mRNA decay. Although the ZFP36 family members are structurally similar, they are known to play distinct functions and regulate different target mRNAs, probably due to their cell-type-specific expression patterns. For instance, ZFP36 has been well-known to function as an anti-inflammatory modulator in murine models of systemic inflammatory diseases by down-regulating the production of various pro-inflammatory cytokines, including TNF-α. Meanwhile, ZFP36L1 is required for the maintenance of the marginal-zone B cell compartment. Recently, we found that ZFP36L2 reduces the expression of Ikzf2 (encoding HELIOS) and suppresses regulatory T cell function. This review summarizes the current understanding of the post-transcriptional regulation of immunological responses and inflammatory diseases by RNA-binding ZFP36 family proteins.


Asunto(s)
Inmunidad/genética , Inflamación/genética , Familia de Multigenes , Interferencia de ARN , Tristetraprolina/fisiología , Regiones no Traducidas 3' , Animales , Enfermedades Autoinmunes/genética , Citocinas/genética , Terapia Genética , Vectores Genéticos/uso terapéutico , Estudio de Asociación del Genoma Completo , Humanos , Hipersensibilidad/genética , Inflamación/terapia , Ratones , Polimorfismo de Nucleótido Simple , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Relación Estructura-Actividad , Tristetraprolina/genética , Dedos de Zinc
16.
Front Genet ; 12: 715196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262605

RESUMEN

[This corrects the article DOI: 10.3389/fgene.2019.00332.].

17.
Annu Rev Immunol ; 39: 481-509, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33577347

RESUMEN

Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.


Asunto(s)
MicroARNs , Estabilidad del ARN , Animales , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
18.
Cytokine X ; 3(1): 100049, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33604565

RESUMEN

T cells are critical to fight pathogenic microbes and combat malignantly transformed cells in the fight against cancer. To exert their effector function, T cells produce effector molecules, such as the pro-inflammatory cytokines IFN-γ, TNF-α and IL-2. Tumors possess many inhibitory mechanisms that dampen T cell effector function, limiting the secretion of cytotoxic molecules. As a result, the control and elimination of tumors is impaired. Through recent advances in genomic editing, T cells can now be successfully modified via CRISPR/Cas9 technology. For instance, engaging (post-)transcriptional mechanisms to enhance T cell cytokine production, the retargeting of T cell antigen specificity or rendering T cells refractive to inhibitory receptor signaling can augment T cell effector function. Therefore, CRISPR/Cas9-mediated genome editing might provide novel strategies for cancer immunotherapy. Recently, the first-in-patient clinical trial was successfully performed with CRISPR/Cas9-modified human T cell therapy. In this review, a brief overview of currently available techniques is provided, and recent advances in T cell genomic engineering for the enhancement of T cell effector function for therapeutic purposes are discussed.

19.
Biology (Basel) ; 10(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33477783

RESUMEN

Inflammation is a crucial part of immune responses towards invading pathogens or tissue damage. While inflammatory reactions are aimed at removing the triggering stimulus, it is important that these processes are terminated in a coordinate manner to prevent excessive tissue damage due to the highly reactive inflammatory environment. Initiation of inflammatory responses was proposed to be regulated predominantly at a transcriptional level, whereas post-transcriptional modes of regulation appear to be crucial for resolution of inflammation. The RNA-binding protein tristetraprolin (TTP) interacts with AU-rich elements in the 3' untranslated region of mRNAs, recruits deadenylase complexes and thereby facilitates degradation of its targets. As TTP regulates the mRNA stability of numerous inflammatory mediators, it was put forward as a crucial post-transcriptional regulator of inflammation. Here, we summarize the current understanding of the function of TTP with a specific focus on its role in adding to resolution of inflammation.

20.
Journal of Clinical Hepatology ; (12): 1116-1120., 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-876656

RESUMEN

ObjectiveTo investigate the effect of AU-rich element RNA-binding factor 1 (AUF1) on glypican 3 (GPC3) in hepatocellular carcinoma (HCC) and its possible mechanism. MethodsTCGA-HCC gene expression data were downloaded from Broad Institute Genome Data Analysis Center, and finally 371 HCC tissue samples with different etiologies and 50 adjacent tissue samples were included; LCI-HCC gene expression data were downloaded from GSE14520, and 214 patients with hepatitis B-associated HCC who had follow-up data were enrolled. A total of 35 primary liver cancer samples and corresponding adjacent tissue samples were collected from HCC patients who underwent radical surgery in Henan Provincial Cancer Hospital from 2009 to 2013. Immunohistochemistry was used to measure the protein expression of GPC3 and AUF1 in HCC tissue; Western Blot and qRT-PCR were used to measure the expression of GPC3 after AUF1 knockdown or overexpression in hepatoma cell lines; RNA-binding protein immunoprecipitation and RNA turnover assay were used to investigate the potential mechanism of AUF1 in regulating the expression of GPC3. The t-test was used for comparison of quantitative data between two groups, and the chi-square test was used for comparison of rates between two groups; the Kaplan-Meier method was used for survival analysis after surgery, and the log-rank test was used for comparison of survival rates. ResultsIn TCGA and LCI databases, the expression of GPC3 in HCC tissue was significantly higher than that in adjacent tissue (P<0.05), and in TCGA database, the high expression of GPC3 was associated with the poor prognosis of HCC patients (P<0.05). Immunohistochemistry showed that both GPC3 and AUF1 proteins are highly expressed in HCC tissue, with a positive expression rate of 77.1% (27/35) and 74.3% (26/35), respectively. In vitro experiment showed that AUF1 knockdown significantly reduced the expression of GPC3 in HepG2 and Huh-7 cells (P<0.05), while AUF1 overexpression significantly increased the expression of GPC3 (P<0.05). AUF1 protein could bind to GPC3 mRNA, and AUF1 knockdown reduced the stability of GPC3 mRNA. ConclusionAUF1 is an important post-transcriptional regulator of the GPC3 gene, and the abnormal high expression of AUF1 and GPC3 may be involved in the development and progression of HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA