Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 14(1): 23246, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370433

RESUMEN

To address the prominent problem of collapse instability in shallow buried soft ground tunnels, a non-invasive stochastic finite element method was introduced. Taking Fujian Puyan Wenbishan tunnel as the background project, ABAQUS finite element software was used to analyze the tunnel excavation mechanics and parameter sensitivity. And developed the software interface program based on Python to output explicit limit state equation for the key mechanical indexes of the tunnel, so as to evaluate the tunnel reliability under different excavation methods, quantitatively. Study results show a significant improvement in efficiency and accuracy when calculating the probability of failure in tunnel excavation by the non-invasive stochastic finite element method. The maximum displacement monitoring points for the Wenbishan tunnel portal section were all vault settlement, with displacements of 33.6 mm, 30.2 mm, and 25.3 mm, respectively, using the annular retained core soil method, single sidewall guide pit and double sidewall guide pit method, with probabilities of failure of 36.11%, 28.03%, and 20.02%. It is found that the reliability of the tunnel is mainly determined by the geotechnical weight, elastic modulus and cohesion of the weak sandy soil layer, which can provide ideas for this type of engineering researches.

2.
Materials (Basel) ; 17(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39336311

RESUMEN

This study focused on standard Compact Tension (CT) specimens and two loading modes during the numerical analyses carried out, namely: pure mode I and mixed-mode loading (Modes I+II). Numerical stress intensity factors, KI, were calculated using Abaqus® 2022 and compared with those given analytically under pure mode I loading, showing very good agreement. Additionally, KI, KII, and KIII results obtained from Abaqus® were presented for mixed-mode loading, analyzing crack growth and variation through the thickness of the CT specimen. Moreover, fatigue crack growth simulations under mode I loading were conducted on standard CT specimens using the Extended Finite Element Method (XFEM) and the Paris Law parameters of an AISI 316L stainless steel. It was shown that XFEM effectively determines crack propagation direction and growth, provided that an appropriate mesh is implemented.

3.
Materials (Basel) ; 17(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39203108

RESUMEN

This paper presents the results of computer simulations of fracture in three laboratory tests: the three-point bending of a notched beam cut from sandstone, the pull-out test of a self-undercutting anchor fixed in sandstone, and the pull-out test of a bar embedded in concrete. Five material failure criteria were used: Rankine, Coulomb-Mohr, Drucker-Prager, Ottosen-Podgórski, and Hoek-Brown. These criteria were implemented in the Abaqus® FEA system to work with the crack propagation modeling method-extended finite element method (X-FEM). All criteria yielded similar force-displacement relationships and similar crack path shapes. The improved procedure gives significantly better, close-to-real crack propagation paths than can be obtained using the standard subroutines built into the Abaqus® system.

4.
Sci Rep ; 14(1): 18647, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134582

RESUMEN

This article investigates the behavior of hybrid FRP Concrete-Steel columns with an elliptical cross section. The investigation was carried out by gathering information through literature and conducting a parametric study, which resulted in 116 data points. Moreover, multiple machine learning predictive models were developed to accurately estimate the confined ultimate strain and the ultimate load of confined concrete at the rupture of FRP tube. Decision Tree (DT), Random Forest (RF), Adaptive Boosting (ADAB), Categorical Boosting (CATB), and eXtreme Gradient Boosting (XGB) machine learning techniques were utilized for the proposed models. Finally, these models were visually and quantitatively verified and evaluated. It was concluded that the CATB and XGB are standout models, offering high accuracy and strong generalization capabilities. The CATB model is slightly superior due to its consistently lower error rates during testing, indicating it is the best model for this dataset when considering both accuracy and robustness against overfitting.

5.
Polymers (Basel) ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065373

RESUMEN

Carbon Fiber Reinforced Polymers (CFRP) have become increasingly significant in real-world applications due to their superior strength-to-weight ratio, corrosion resistance, and high stiffness. These properties make CFRP an ideal material for reinforcing concrete structures, particularly in scenarios where weight reduction is crucial, such as in bridges and high-rise buildings. The transformative potential of CFRP lies in its ability to enhance the durability and load-bearing capacity of concrete structures while minimizing maintenance costs and extending the lifespan of the infrastructure. This research explores the impact of reinforcing structural elements with advanced composite materials on the strength and durability of concrete and reinforced concrete structures. By integrating Carbon Fiber Reinforced Polymer (CFRP) reinforcements, we subjected both rectangular and T-section concrete beams to comprehensive three-point bending tests, revealing a substantial increase in flexural strength by 45% and crack resistance due to CFRP reinforcement. The study revealed that CFRP reinforcement increased the flexural strength of concrete beams by 45% and improved crack resistance significantly. Additionally, the load-bearing capacity of the beams was enhanced by 40% compared to unreinforced specimens. These improvements were validated through finite element simulations, which showed a close alignment with the experimental data. Furthermore, an innovative simulation study was conducted using a finely tuned finite element numerical model within the Abaqus calculation code. This model accurately replicated the laboratory specimens in terms of shape, dimensions, and loading conditions. The simulation results not only validated the experimental observations but also provided deeper insights into the stress distribution and failure mechanisms of the reinforced beams. Novel aspects of this study include the identification of specific failure patterns unique to CFRP-reinforced beams and the introduction of an enhanced interaction model that more accurately reflects the composite behavior under load. In CFRP-reinforced beams, specific failure patterns were identified, including flexural cracks in the tension zone and debonding of the CFRP sheets. These patterns indicate the points of maximum stress concentration and potential weaknesses in the reinforcement strategy. The study revealed that while CFRP significantly improves the overall strength and stiffness, careful attention must be given to the bonding process and the quality of the adhesive used to ensure optimal performance. These findings contribute significantly to the understanding of material interactions and structural performance, offering new pathways for the design and optimization of composite-reinforced concrete structures. This research underscores the transformative potential of composite materials in elevating the structural integrity and longevity of concrete infrastructures.

6.
Materials (Basel) ; 17(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38998309

RESUMEN

Residual drifts are an important measure of post-earthquake functionality in bridges and buildings, and can determine whether the structure remains fit for its intended purpose or not. This study aims at investigating numerically, through finite element (FE) analysis in ABAQUS, the cyclic response of exterior steel I beam-hollow column connection using welded shape memory alloys (SMA) bolts and seat angles. This is followed by validating the numerical model using an accredited experimental data available in the literature through different techniques, (1) SMA bolts, (2) SMA angles, (3) SMA bolts and angles. The parameters investigated included: SMA type, SMA angle thickness, SMA bolt diameter, SMA angle stiffener and SMA angle direction. The cyclic performance of the steel connection was enhanced further by varying the bolt diameter, plate thickness, angle type and direction. The results revealed that the connections equipped with a combination of SMA plates and SMA angles reduced the residual drift by up to 94%, and doubled the self-centering capability compared to conventional steel connections. Moreover, the parametric analysis showed that Fe-based SMA members could be a good alternative to NiTi based SMA members for improving the self-centering capability and reducing the residual drifts of conventional steel connections.

7.
Micromachines (Basel) ; 15(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38930699

RESUMEN

Ultrasonic vibration superimposed face milling enables the generation of predefined surface microstructures by an appropriate setting of the process parameters. The geometrical reproducibility of the surface characteristics depends strongly on the plastic material deformation. Thus, the precise prediction of the emerging surface microstructures using kinematic simulation models is limited, because they ignore the influence of material flow. Consequently, the effects of plastic as well as elastic deformation are investigated in depth by finite element analysis. Microstructured surfaces resulting from these numerical models are characterized quantitatively by areal surface parameters and compared to those from a kinematical simulation and a real machined surface. A high degree of conformity between the values of the simulated surfaces and the measured values is achieved, particularly with regard to material distribution. Deficits in predictability exist primarily due to deviations in plastic deformation. Future research can address this, either by implementing a temperature consideration or adapting specific modeling aspects like an adjusted depth of cut or experimental validated material parameters.

8.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932050

RESUMEN

Among the many benefits of implementing numerical analysis on real objects, economic and environmental considerations are likely the most important ones. Nonetheless, it is also crucial to constrain the duration and space necessary for conducting experimental investigations. Although these benefits are clear, the applicability of such models must be appropriately verified. This research subjected validation of numerical models depicting the behavior of unstrengthened and strengthened laminated veneer lumber (LVL) beams. As a reinforcement, a carbon fiber reinforced polymer (CFRP) sheet and laminates were used. Experiments were conducted on full-scale members within the framework of the so-called four-point bending testing method. Numerical simulations were performed using the Abaqus software. Two types of material models were examined for laminated veneer lumber: linearly elastic and linearly elastic-perfectly plastic with Hill's yield criterion. A distinction was made in the material properties of carbon composites based on their location on the height of the cross-section. The outlined numerical models accurately depict the behavior of real structural elements. The precision of predicting load-bearing capacity amounts to a few percent for strengthened beams and a maximum of eleven percent for unstrengthened beams. The relative deviation between numerical and experimental values of bending stiffness was at a maximum of seven percent. Applying the elastic-plastic model enables accurate representation of the load versus deflection relation and the distribution of stress and deformation of strengthened beams. Based on the findings, directives were provided for further optimization of the positioning of composite reinforcement along the span of the beam. Reinforcement design of existing laminated veneer lumber members can be made using presented methodology.

9.
Polymers (Basel) ; 16(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891445

RESUMEN

This research investigates the application of plastic fiber reinforcement in pre-tensioned reinforced concrete railway sleepers, conducting an in-depth examination in both experimental and computational aspects. Utilizing 3-point bending tests and the GOM ARAMIS system for Digital Image Correlation, this study meticulously evaluates the structural responses and crack development in conventional and plastic fiber-reinforced sleepers under varying bending moments. Complementing these tests, the investigation employs ABAQUS' advanced finite element modeling to enhance the analysis, ensuring precise calibration and validation of the numerical models. This dual approach comprehensively explains the mechanical behavior differences and stresses within the examined structures. The incorporation of plastic fibers not only demonstrates a significant improvement in mechanical strength and crack resistance but paves the way for advancements in railway sleeper technology. By shedding light on the enhanced durability and performance of reinforced concrete structures, this study makes a significant contribution to civil engineering materials science, highlighting the potential for innovative material applications in the construction industry.

10.
Micromachines (Basel) ; 15(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38675251

RESUMEN

Aluminum alloy 6082-T6 is an important material for manufacturing the outer skin of high-speed trains, and laser shock forming can realize the rapid forming of complex-shaped plates. In order to improve the efficiency of the simulation modeling of laser shock forming for aluminum alloy 6082-T6, Python scripting language was used for the secondary development of Abaqus. A plugin was utilized to simulate and analyze the laser shock forming process of aluminum alloy 6082-T6. The coordinates of the plate after laser impact molding were measured using a coordinate measuring machine to calculate the arc bow height of the plate. The accuracy of the simulation model was verified by comparing with the simulation results. The deformation characteristics of plastic strain and arc height of aluminum alloy 6082-T6 under different laser process parameters were analyzed. The simulation plugin has a concise interface, high operability, and accurate results with the other parameters unchanged. When the laser energy is 5 J, 6 J, and 7 J, the corresponding arc heights are 5.9 mm, 6.6 mm, and 7.2 mm, respectively. As the thickness of the sheet increases, the deformation changes from concave at 1 mm to convex at 2 mm, 3 mm, 4 mm, and 5 mm. As the spot size increases from 1 mm to 5 mm, the transmission mode of the shock wave gradually changes from spherical wave to planar wave, and the arc height of the sheet increases from 4.6 mm to 8.2 mm. With the increase in the spot overlap rate, the impact area accumulates residual stress, and the arc height of the sheet is 5.7 mm, 6.6 mm, 7.3 mm, and 8.5 mm, respectively. The secondary development of ABAQUS 2021 using Python 3.6 scripting language has improved the efficiency of simulation modeling and provided reference for rapidly predicting the deformation characteristics of aluminum alloy 6082-T6 under different laser process parameters.

11.
Sci Rep ; 14(1): 9253, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649416

RESUMEN

In order to realize the intelligent monitoring of the high-precision positioning of the hole position and the real-time control of the verticality of the pile, an intelligent monitoring system was developed based on the combination positioning technology of BDS and UWB and the biaxial tilt sensor, and the numerical simulation and comparative analysis of the verticality of the pile were carried out by abaqus. The deviation of pile foundation in different directions and the deviation of pile body are controlled by the monitoring system, and abnormal warning is made when the deviation exceeds the permissible range.Through the application of intelligent monitoring system in the pile foundation engineering area of Changshui Airport, it is found that the plane offset and perpendicularity of all piles meet the standard requirements and the construction error is controlled at a small value. The results show that the application of intelligent inspection system can not only ensure the construction quality of pile foundation, but also meet and improve the level of digitization and information technology of smart construction site.

12.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611222

RESUMEN

The usage of adhesively bonded joints, such as single-lap and double-lap joints, is increasing rapidly in aerospace composite structures as a popular alternative to bolts and rivets. Compared to the conventional joining methods such as fastening and riveting, adhesive-bonding technology better prevents damage to composite structures due to the smooth configuration and the mitigation of stress concentration around holes. In this work, the built-in progressive-damage-modeling techniques in Abaqus, including the cohesive zone model (CZM) and the virtual crack closure technique (VCCT), are used to predict the strength and progressive failure of composite single-lap joints subjected to tensile loading. Modeling of an adhesive layer by using a zero/non-zero-thickness cohesive element, cohesive surface, and VCCT is investigated, as is the effect of brittle and ductile adhesives. Two-dimensional finite-element models with different damage-modeling strategies are performed in this study. The failure-load predictions are compared with the experimental results obtained from the literature. For the ductile adhesive, the predicted failure loads using a zero/non-zero-thickness cohesive elements and a cohesive surface are all shown to be in good agreement with the experiments. However, the VCCT technique predicts higher failure loads. For a brittle adhesive, on the other hand, the predictions by zero/non-zero-thickness cohesive elements and cohesive surfaces reveal notable deviations compared to the experimental results. In contrast to the ductile adhesive, the VCCT technique is revealed to be accurate in predicting the brittle adhesive.

13.
Materials (Basel) ; 17(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38611978

RESUMEN

The paper concerns the numerical modelling of a new slim-floor system with innovative steel-concrete composite beams called "hybrid beams". Hybrid beams consist of a high-strength TT inverted cross-section steel profile and a concrete core made of high-performance concrete and are jointed with prestressed hollow core slabs by infill concrete and tie reinforcement. Such systems are gaining popularity since they allow the integration of the main structural members within the ceiling depth, shorten the execution time, and reduce the use of concrete and steel. A three-dimensional finite element model is proposed with all parts of the system taken into account and detailed geometry reproduction. Advanced constitutive models are adopted for steel and concrete. Special attention is paid to the proper characterisation of interfaces. The new approach to calibration of damaged elastic traction-separation constitutive model for cohesive elements is applied to concrete-to-concrete contact zones. The model is validated with outcomes of experimental field tests and analytical calculations. A satisfactory agreement between different assessment methods is obtained. The model can be used in the development phase of a new construction system, for instance, to plan further experimental campaigns or to calibrate simplified design formulas.

14.
Heliyon ; 10(6): e26695, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38510006

RESUMEN

In this paper, a new structural steel shape is proposed to be used in composite columns. The model is made of a concrete column with the proposed steel section embedded in concrete with four angles "L shape", welded together to form the shape "X". The equivalent compressive strength capacity of this "X" shape was compared to the conventional steel "W shape" section. The main goal of the research is the strength enlargement of composite columns. Three 6 ft long columns were analyzed: one conventional "W" section (W100 × 330), one with two angles (2 L 89 × 76.5 × 8), and one with four angles (4 L 50 × 50 × 6.5). Finite element analysis was completed using ABAQUS software and theoretical analysis was performed using AISC and Eurocode4. The deflection control analysis using ABAQUS was validated first on samples from a previously published experimental study conducted in the laboratory, and results from ABAQUS were aligned with the experimental study outcomes. This study found that the proposed "X" shape steel section has comparable compressive strength values to the conventional "W" section.

15.
MethodsX ; 12: 102632, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38524304

RESUMEN

With temperatures rising above 1000 °C within 5 min, hydrocarbon fire causes rapid strength degradation of structural steel members. It is among the most dangerous hazards, such as boiling liquid expanding vapour explosion (BLEVE) in the oil and gas industry. Intumescent coating as passive protection is widely adopted to prevent the steel structure from material property reduction. However, when optimising fire protection with heat transfer simulation, repetitive modelling work and lacking recalculation principle hinder productivity improvement. This method is developed to generate steel beam models and provides an effective algorithm to optimise coating thickness considering the temperature of a specific region. The main functions of the method include: •Providing section dimensions, initial insulation thickness, target temperature and heating time, temperature allowance and mesh size as variables.•Automatically generating the Abaqus steel beam model under 3-side heating conditions.•Effective iteration algorithm to modify fire protection thickness: test containing 38 Universal beam sections with a 5 °C allowance below target shows that 55.2% were completed within five iterations and 76.3% were completed within eight iterations.

16.
Sci Rep ; 14(1): 3670, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38351185

RESUMEN

Clamping bushing structure is an internode connection mechanism designed for the standard section of tubular truss tower. In this paper, the clamping bushing structure of the connecting mechanism of super-large tower crane is taken as the research object, a three-dimensional model of clamping bushing structure is established and imported into ABAQUS, and its multi-body contact model is further constructed to study the contact and bearing relationship of the structure under multiple working conditions, and the accuracy of the calculation results of the model is verified by the experimental stress test under tensile working conditions. In addition, this study is based on the control variable method, and through the design of orthogonal test table, the influence degree of five variable parameters of clamping bushing on the bearing capacity of the structure is investigated. Finally, through the range analysis, the optimal horizontal combination of variables and parameters of clamping bushing structure is obtained, and the optimal matching relationship between the shape of the tower connecting mechanism and the bearing capacity is obtained. The results show that, compared with the original model, the stress concentration at the most dangerous section of the optimized joint and the bushing is obviously alleviated, in which the stress peaks of the upper and lower joints are kept below 500 MPa, and the stress peaks of the bushing groove are also reduced to between 573 and 722 MPa. Moreover, the designed and optimized lower joint can reduce the maximum equivalent plastic strain of the joint root circumference by 56.05% under the original maximum tensile condition, and the overall distribution trend of equivalent plastic strain is more uniform, and a more reliable structural design is obtained, which plays an important guiding role in the design, optimization and analysis of the connecting mechanism of the tower body of large tower crane.

17.
Heliyon ; 10(3): e25450, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38333857

RESUMEN

Defining the specific cure profile of thermosetting polymers is an important aspect in many applications where the mechanical performance and appearance of components can be affected. Cure-induced strains or stresses from the shrinkage of thermosets lead to reduced performance due to accelerated damage or discarded products due to distortions. This research focuses on validating a proposed modelling framework, simulating the load-transferring part of the curing process affecting the mechanical performance. The model's accuracy is evaluated against experimental results, and the model prediction is found to be within an accuracy of 2-8% of the experimental results. A 16-hour and 31-hour two-stage cure profile was compared and validated experimentally. The short profile results in a higher cure-induced of -0.56% with the longer profile yielding -0.46% cure-induced strain. Based on the model, a new three-stage cure profile has been proposed. Using this, it is possible to achieve a low level of cure-induced strain of -0.45% at a shorter cure time on 18 h.

18.
Heliyon ; 10(3): e25379, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38371981

RESUMEN

Shear and torsional load on soft solids such as brain white matter purportedly exhibits the Poynting Effect. It is a typical nonlinear phenomenon associated with soft materials whereby they tend to elongate (positive Poynting effect) or contract (negative Poynting effect) in a direction perpendicular to the shearing or twisting plane. In this research, a novel 3D micromechanical Finite Element Model (FEM) has been formulated to describe the Poynting effect in bi-phasic modeled brain white matter (BWM) representative volume element (RVE) with axons tracts embedded in surrounding extracellular matrix (ECM) for simulating brain matter's response to pure and simple shear. In the presented BWM 3D FEM, nonlinear Ogden hyper-elastic material model is deployed to interpret axons and ECM material phases. The modeled bi-phasic RVEs have axons tied to the surrounding ECM. In this proof-of-concept (POC) FEM, three simple shear loading configurations and a pure shear case were analyzed. Root mean square deviation (RMSD) was calculated for stress and deformation response plots to understand the effect of axon-ECM orientations and loading conditions on the degree of Poynting behavior. Variations in normal stresses (S11, S22, or S33) perpendicular to the shear plane underscored the significance of axonal fiber-matrix interactions. From the simulated ensemble of cases, a transitional dominance trend was noticed, as simple sheared axons showed pronounced Poynting behavior, but shear deformation build-up in the purely sheared brain model exhibited the highest Poynting behavior at higher strain % limits. At lower strain limits, simple shear imparted across and perpendicular to axonal tract directions emerged as the dominant Poynting effect configurations. At high strains, the stress-strain% plots manifested mild strain stiffening effects and bending stresses in purely sheared axons, substantiated the strong non-linearity in brain tissues' response.

19.
Comput Biol Med ; 168: 107720, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006828

RESUMEN

BACKGROUND: Bone is a living material that, unlike man-made ones, demonstrates continuous adaptation of its structure and mechanical properties to resist the imposed mechanical loading. Adaptation in trabecular bone is characterised by improvement of its stiffness in the loading direction and respective realignment of trabecular load-bearing architecture. Considerable experimental and simulation evidence of trabecular bone adaptation to its mechanical environment at the tissue- and organ-levels was obtained, while little attention was given to the trabecula-level of this process. This study aims to describe and classify load-driven morphological changes at the level of individual trabeculae and to propose their drivers. METHOD: For this purpose, a well-established mechanoregulation-based numerical model of bone adaptation was implemented in a user-defined subroutine that changed the structural and mechanical properties of trabeculae based on the magnitude of a mechanical stimulus. This subroutine was used in conjunction with finite-element models of variously shaped structures representing trabeculae loaded in compression or shear. RESULTS: In all analysed cases, trabeculae underwent morphological evolution under applied compressive or shear loading. Among twelve cases analysed, six main mechanisms of morphological evolution were established: reorientation, splitting, merging, full resorption, thinning, and thickening. Moreover, all simulated cases presented the ability to reduce the mean value of von Mises stress while increasing their ability to resist compressive/shear loading during adaptation. CONCLUSION: This study evaluated morphological and mechanical changes in trabeculae of different shapes in response to compressive or shear loadings and compared them based on the analysis of von Mises stress distribution as well as profiles of normal and shear stresses in the trabeculae at different stages of their adaptation.


Asunto(s)
Huesos , Modelos Biológicos , Humanos , Estrés Mecánico , Soporte de Peso , Simulación por Computador , Análisis de Elementos Finitos
20.
Materials (Basel) ; 16(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005121

RESUMEN

Two medium-carbon microalloyed steels with a predominant acicular ferrite microstructure were investigated in this study in order to determine the initial micro-crack formation mechanism and the role of acicular ferrite structure in cleavage fracture. In order to ensure cleavage fracture, samples were investigated at -196 °C for uniaxial tension and four point bending fracture. Previous investigations have shown that cleavage fracture for steels with a predominant acicular ferrite microstructure has not been initiated by the fracture of coarse TiN particles as in ferrite-pearlite, bainite, or martensitic microalloyed steels. The average maximal thickness of cementite plates measured in this work is 0.798 µm and 0.966 µm, for V and TiV steel, respectively. The corresponding stress values required for their fracture according to Griffith's equation are 1970 MPa and 1791 MPa, respectively. Estimated values of the effective surface energy for the V steel with an average cementite volume fraction of 3.8% range from 40 Jm-2 to 86 Jm-2, and for the TiV steel with an average cementite volume fraction of 18.3% range from 55 Jm-2 to 82 Jm-2. The fracture of coarse cementite plates was found to not to be responsible for the cleavage fracture initiation in case of both steels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA