Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 1013313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36267443

RESUMEN

N-acetylglucosamine (GlcNAc) is widely used in nutritional supplement and is generally produced from chitin using chitinases. While most GlcNAc is produced from colloidal chitin, it is essential that chitinases be acidic enzymes. Herein, we characterized an acidic, highly salinity tolerance and thermostable chitinase AfChiJ, identified from the marine fungus Aspergillus fumigatus df673. Using AlphaFold2 structural prediction, a truncated Δ30AfChiJ was heterologously expressed in E. coli and successfully purified. It was also found that it is active in colloidal chitin, with an optimal temperature of 45°C, an optimal pH of 4.0, and an optimal salt concentration of 3% NaCl. Below 45°C, it was sound over a wide pH range of 2.0-6.0 and maintained high activity (≥97.96%) in 1-7% NaCl. A notable increase in chitinase activity was observed of Δ30AfChiJ by the addition of Mg2+, Ba2+, urea, and chloroform. AfChiJ first decomposed colloidal chitin to generate mainly N-acetyl chitobioase, which was successively converted to its monomer GlcNAc. This indicated that AfChiJ is a bifunctional enzyme, composed of chitobiosidase and ß-N-acetylglucosaminidase. Our result suggested that AfChiJ likely has the potential to convert chitin-containing biomass into high-value added GlcNAc.

2.
Molecules ; 27(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35056724

RESUMEN

Chitooligosaccharides, the degradation products of chitin and chitosan, possess anti-bacterial, anti-tumor, and anti-inflammatory activities. The enzymatic production of chitooligosaccharides may increase the interest in their potential biomedical or agricultural usability in terms of the safety and simplicity of the manufacturing process. Crab-eating monkey acidic chitinase (CHIA) is an enzyme with robust activity in various environments. Here, we report the efficient degradation of chitin and chitosan by monkey CHIA under acidic and high-temperature conditions. Monkey CHIA hydrolyzed α-chitin at 50 °C, producing N-acetyl-d-glucosamine (GlcNAc) dimers more efficiently than at 37 °C. Moreover, the degradation rate increased with a longer incubation time (up to 72 h) without the inactivation of the enzyme. Five substrates (α-chitin, colloidal chitin, P-chitin, block-type, and random-type chitosan substrates) were exposed to monkey CHIS at pH 2.0 or pH 5.0 at 50 °C. P-chitin and random-type chitosan appeared to be the best sources of GlcNAc dimers and broad-scale chitooligosaccharides, respectively. In addition, the pattern of the products from the block-type chitosan was different between pH conditions (pH 2.0 and pH 5.0). Thus, monkey CHIA can degrade chitin and chitosan efficiently without inactivation under high-temperature or low pH conditions. Our results show that certain chitooligosaccharides are enriched by using different substrates under different conditions. Therefore, the reaction conditions can be adjusted to obtain desired oligomers. Crab-eating monkey CHIA can potentially become an efficient tool in producing chitooligosaccharide sets for agricultural and biomedical purposes.


Asunto(s)
Quitina
3.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34897517

RESUMEN

Acidic chitinase (Chia) digests the chitin of insects in the omnivorous stomach and the chitinase activity in carnivorous Chia is significantly lower than that of the omnivorous enzyme. However, mechanistic and evolutionary insights into the functional changes in Chia remain unclear. Here we show that a noninsect-based diet has caused structural and functional changes in Chia during the course of evolution in Carnivora. By creating mouse-dog chimeric Chia proteins and modifying the amino acid sequences, we revealed that F214L and A216G substitutions led to the dog enzyme activation. In 31 Carnivora, Chia was present as a pseudogene with stop codons in the open reading frame (ORF) region. Importantly, the Chia proteins of skunk, meerkat, mongoose, and hyena, which are insect-eating species, showed high chitinolytic activity. The cat Chia pseudogene product was still inactive even after ORF restoration. However, the enzyme was activated by matching the number and position of Cys residues to an active form and by introducing five meerkat Chia residues. Mutations affecting the Chia conformation and activity after pseudogenization have accumulated in the common ancestor of Felidae due to functional constraints. Evolutionary analysis indicates that Chia genes are under relaxed selective constraint in species with noninsect-based diets except for Canidae. These results suggest that there are two types of inactivating processes in Carnivora and that dietary changes affect the structure and activity of Chia.


Asunto(s)
Carnívoros , Quitinasas , Secuencia de Aminoácidos , Animales , Carnívoros/metabolismo , Quitina/química , Quitina/metabolismo , Quitinasas/genética , Quitinasas/metabolismo , Dieta , Perros , Ratones
4.
Molecules ; 26(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771117

RESUMEN

Chitooligosaccharides exhibit several biomedical activities, such as inflammation and tumorigenesis reduction in mammals. The mechanism of the chitooligosaccharides' formation in vivo has been, however, poorly understood. Here we report that mouse acidic chitinase (Chia), which is widely expressed in mouse tissues, can produce chitooligosaccharides from deacetylated chitin (chitosan) at pH levels corresponding to stomach and lung tissues. Chia degraded chitin to produce N-acetyl-d-glucosamine (GlcNAc) dimers. The block-type chitosan (heterogenous deacetylation) is soluble at pH 2.0 (optimal condition for mouse Chia) and was degraded into chitooligosaccharides with various sizes ranging from di- to nonamers. The random-type chitosan (homogenous deacetylation) is soluble in water that enables us to examine its degradation at pH 2.0, 5.0, and 7.0. Incubation of these substrates with Chia resulted in the more efficient production of chitooligosaccharides with more variable sizes was from random-type chitosan than from the block-type form of the molecule. The data presented here indicate that Chia digests chitosan acquired by homogenous deacetylation of chitin in vitro and in vivo. The degradation products may then influence different physiological or pathological processes. Our results also suggest that bioactive chitooligosaccharides can be obtained conveniently using homogenously deacetylated chitosan and Chia for various biomedical applications.


Asunto(s)
Quitinasas/metabolismo , Quitosano/metabolismo , Concentración de Iones de Hidrógeno , Pulmón/metabolismo , Oligosacáridos/metabolismo , Estómago/metabolismo , Animales , Quitinasas/química , Quitosano/química , Hidrólisis , Ratones , Oligosacáridos/química , Especificidad de Órganos , Especificidad por Sustrato , Difracción de Rayos X
5.
Planta ; 251(1): 20, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31781986

RESUMEN

MAIN CONCLUSION: Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia-resistant apples are not available, certain cultivars are tolerant. It was reported that in flower infection assay, the 'Freedom' cultivar was Erwinia tolerant, while the 'Jonagold' cultivar was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed, we found that an acidic chitinase III protein (Machi3-1) selectively accumulates to very high levels in the nectar and the stigma exudate of the 'Freedom' cultivar. We show that three different Machi3-1 alleles exist in apple cultivars and that only the 5B-Machi3-1 allele expresses the Machi3-1 protein in the nectar and the stigma exudate. We demonstrate that the 5B-Machi3-1 allele was introgressed from the Malus floribunda 821 clone into different apple cultivars including the 'Freedom'. Our data suggest that MYB-binding site containing repeats of the 5B-Machi3-1 promoter is responsible for the strong nectar- and stigma exudate-specific expression. As we found that in vitro, the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 protein could partially protect 5B-Machi3-1 allele containing cultivars against Erwinia by inhibiting the multiplication and biofilm formation of the pathogen in the stigma exudate and in the nectar.


Asunto(s)
Quitinasas/metabolismo , Erwinia amylovora/fisiología , Flores/metabolismo , Malus/enzimología , Malus/microbiología , Enfermedades de las Plantas/microbiología , Exudados de Plantas/metabolismo , Néctar de las Plantas/metabolismo , Alelos , Secuencia de Aminoácidos , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Quitinasas/química , Resistencia a la Enfermedad , Erwinia amylovora/efectos de los fármacos , Erwinia amylovora/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Malus/efectos de los fármacos , Malus/genética , Especificidad de Órganos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nicotiana/genética
6.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370114

RESUMEN

Acidic chitinase (Chia) has been implicated in asthma, allergic inflammations, and food processing. We have purified Chia enzymes with striking acid stability and protease resistance from chicken and pig stomach tissues using a chitin column and 8 M urea (urea-Chia). Here, we report that acetic acid is a suitable agent for native Chia purification from the stomach tissues using a chitin column (acetic acid-Chia). Chia protein can be eluted from a chitin column using 0.1 M acetic acid (pH 2.8), but not by using Gly-HCl (pH 2.5) or sodium acetate (pH 4.0 or 5.5). The melting temperatures of Chia are not affected substantially in the elution buffers, as assessed by differential scanning fluorimetry. Interestingly, acetic acid appears to be more effective for Chia-chitin dissociation than do other organic acids with similar structures. We propose a novel concept of this dissociation based on competitive interaction between chitin and acetic acid rather than on acid denaturation. Acetic acid-Chia also showed similar chitinolytic activity to urea-Chia, indicating that Chia is extremely stable against acid, proteases, and denaturing agents. Both acetic acid- and urea-Chia seem to have good potential for supplementation or compensatory purposes in agriculture or even biomedicine.


Asunto(s)
Quitina/química , Quitinasas/química , Ácido Acético/química , Animales , Pollos , Quitina/metabolismo , Quitinasas/metabolismo , Unión Proteica , Estómago/enzimología , Porcinos
7.
J Exp Biol ; 217(Pt 19): 3493-503, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25189365

RESUMEN

This study demonstrates that Amblyomma americanum (Aam) constitutively and ubiquitously expresses the long (L) and short (S) putative acidic chitinases (Ach) that are distinguished by a 210 base pair (bp) deletion in AamAch-S. Full-length AamAch-L and AamAch-S cDNA are 1959 and 1718 bp long, containing 1332 and 1104 bp open reading frames that code for 443 and 367 amino acid residues proteins with the former predicted to be extracellular and the latter intracellular. Both AamAch-L and AamAch-S mRNA are expressed in multiple organs as revealed by qualitative RT-PCR analysis. Furthermore, quantitative reverse transcription polymerase chain reaction analysis revealed that AamAch-L mRNA was downregulated in the mid-gut, but was unchanged in the salivary gland and in other organs in response to feeding. Of significant interest, AamAch-L and/or AamAch-S functions are probably associated with formation and/or maintenance of stability of A. americanum tick cement cone. Dual RNA interference silencing of AamAch-L and/or AamAch-S mRNA caused ticks to loosely attach onto host skin as suggested by bleeding around tick mouthparts and ticks detaching off host skin with a light touch. AamAch-L may apparently encode an inactive chitinase as indicated by Pichia pastoris-expressed recombinant AamAch-L failing to hydrolyse chitinase substrates. Unpublished related work in our laboratory, and published work by others that found AamAch-L in tick saliva, suggest that native AamAch-L is a non-specific immunoglobulin binding tick saliva protein in that rAamAch-L non-specifically bound rabbit, bovine and chicken non-immune sera. We discuss findings in this study with reference to advancing knowledge on tick feeding physiology.


Asunto(s)
Quitinasas/fisiología , Conducta Alimentaria/fisiología , Silenciador del Gen , Ixodidae/fisiología , Secuencia de Aminoácidos , Animales , Bovinos , Pollos , Quitinasas/genética , Quitinasas/metabolismo , ADN Complementario/genética , Regulación de la Expresión Génica , Ixodidae/enzimología , Ixodidae/genética , Datos de Secuencia Molecular , Filogenia , Interferencia de ARN , ARN Mensajero/genética , Conejos/parasitología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de Proteína
8.
Int J Biol Macromol ; 61: 264-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23850557

RESUMEN

The antiviral activities of sulfated lentinan (sLNT) and lentinan (LNT) against tobacco mosaic virus (TMV) in tobacco seedlings and the underlying mechanism were investigated. Compared with LNT, sLNT showed significantly higher inhibitory effects on viral infection and TMV multiplication in a dose-dependent way, which might be due to its binding with TMV coat protein. In addition, both sLNT and LNT induced the transient production of H2O2 and expression of some defense-related genes (stilbene synthase, glucanase, acidic chitinase class IV, phenylalanine ammonia-lyase and 5-epi-aristolochene synthase) both locally and systemically. These results suggested that sLNT and LNT could control TMV incidence and the action mechanism might be associated with the affinity towards TMV coat protein and activation of some defense genes.


Asunto(s)
Antivirales/farmacología , Lentinano/análogos & derivados , Lentinano/farmacología , Nicotiana/efectos de los fármacos , Nicotiana/virología , Virus del Mosaico del Tabaco/efectos de los fármacos , Resistencia a la Enfermedad/genética , Polisacáridos Fúngicos/química , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/virología , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , Plantones/efectos de los fármacos , Plantones/virología , Hongos Shiitake/química , Nicotiana/genética , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...