Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Intervalo de año de publicación
1.
Mol Breed ; 44(5): 36, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38745882

RESUMEN

Flowering plants exhibit a wide range of sexual reproduction systems, with the majority being hermaphroditic. However, some plants, such as Actinidia arguta (kiwiberry), have evolved into dioecious species with distinct female and male vines. In this study, we investigated the flower load and growth habits of female kiwiberry genotypes to identify the genetic basis of high yield with low maintenance requirements. Owing to the different selection approaches between female and male genotypes, we further extended our study to male kiwiberry genotypes. By combining both investigations, we present a novel breeding tool for dioecious crops. A population of A. arguta seedlings was phenotyped for flower load traits, in particular the proportion of non-floral shoots, proportion of floral shoots, and average number of flowers per floral shoot. Quantitative trait locus (QTL) mapping was used to analyse the genetic basis of these traits. We identified putative QTLs on chromosome 3 associated with flower-load traits. A pleiotropic effect of the male-specific region of the Y chromosome (MSY) on chromosome 3 affecting flower load-related traits between female and male vines was observed in an A. arguta breeding population. Furthermore, we utilized Genomic Best Linear Unbiased Prediction (GBLUP) to predict breeding values for the quantitative traits by leveraging genomic data. This approach allowed us to identify and select superior genotypes. Our findings contribute to the understanding of flowering and fruiting dynamics in Actinidia species, providing insights for kiwiberry breeding programs aiming to improve yield through the utilization of genomic methods and trait mapping. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01476-7.

2.
J Med Food ; 27(5): 419-427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38656897

RESUMEN

The primary inflammatory process in atherosclerosis, a major contributor to cardiovascular disease, begins with monocyte adhering to vascular endothelial cells. Actinidia arguta (kiwiberry) is an edible fruit that contains various bioactive components. While A. arguta extract (AAE) has been recognized for its anti-inflammatory characteristics, its specific inhibitory effect on early atherogenic events has not been clarified. We used tumor necrosis factor-α (TNF-α)-stimulated human umbilical vein endothelial cells (HUVECs) for an in vitro model. AAE effectively hindered the attachment of THP-1 monocytes and reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) in HUVECs. Transcriptome analysis revealed that AAE treatment upregulated phosphatase and tensin homolog (PTEN), subsequently inhibiting phosphorylation of AKT and glycogen synthase kinase 3ß (GSK3ß) in HUVECs. AAE further hindered phosphorylation of AKT downstream of the nuclear factor kappa B (NF-κB) signaling pathway, leading to suppression of target gene expression. Oral administration of AAE suppressed TNF-α-stimulated VCAM-1 expression, monocyte-derived macrophage infiltration, and proinflammatory cytokine expression in C57BL/6 mouse aortas. Myo-inositol, identified as the major compound in AAE, played a key role in suppressing THP-1 monocyte adhesion in HUVECs. These findings suggest that AAE could serve as a nutraceutical for preventing atherosclerosis by inhibiting its initial pathogenesis.


Asunto(s)
Actinidia , Adhesión Celular , Glucógeno Sintasa Quinasa 3 beta , Células Endoteliales de la Vena Umbilical Humana , Inositol , Monocitos , FN-kappa B , Fosfohidrolasa PTEN , Extractos Vegetales , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Factor de Necrosis Tumoral alfa , Molécula 1 de Adhesión Celular Vascular , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Humanos , FN-kappa B/metabolismo , FN-kappa B/genética , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Actinidia/química , Animales , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Adhesión Celular/efectos de los fármacos , Ratones , Inositol/farmacología , Inositol/análogos & derivados , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Masculino
3.
Front Nutr ; 11: 1349162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660064

RESUMEN

Pectin was extracted from Actinidia arguta Sieb. et Zucc (A.arguta) using the ultrasound-assisted acid method and the single acid method. The physicochemical properties, structure, and antioxidant properties of two different pectins were investigated. The results showed that the extraction yield of the ultrasound-assisted acid method is higher than that of the single acid method. The molecular structure of A. arguta pectin extracted by the ultrasound-assisted acid method belongs to a mixed structure of RG-I and HG-type domains. Through structural feature analysis, the ultrasound-assisted extraction pectin (UAP) has a more branched structure than the single acid-extracted pectin (SAP). The SAP has a higher degree of esterification than the UAP. The physical property results show that the viscosity, solubility, and water-holding capacity of the UAP are better than those of the SAP. The antioxidant test results show that the hydroxyl radical scavenging and reducing powers of the UAP are superior to those of the SAP. This study shows the composition, physicochemical properties, and antioxidant activity of A. arguta pectin extracted by the ultrasonic-assisted extraction method to provide a theoretical basis for its application as an antioxidant and other food additives in the food industry.

4.
J Pharm Biomed Anal ; 244: 116105, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552420

RESUMEN

BACKGROUND: Actinidia arguta leaves (AAL) are traditionally consumed as a vegetable and as tea in folk China and Korea. Previous studies have reported the anti-diabetic effect of AAL, but its bioactive components and mechanism of action are still unclear. AIM OF THE STUDY: This study aims to identify the hypoglycemic active components of AAL by combining serum pharmacochemistry and network pharmacology and to elucidate its possible mechanism of action. METHODS: Firstly, the effective components in mice serum samples were characterized by UPLC-Q/TOF-MSE. Furthermore, based on these active ingredients, network pharmacology analysis was performed to establish an "H-C-T-P-D" interaction network and reveal possible biological mechanisms. Finally, the affinity between serum AAL components and the main proteins in the important pathways above was investigated through molecular docking analysis. RESULTS: Serum pharmacochemistry analysis showed that 69 compounds in the serum samples were identified, including 23 prototypes and 46 metabolites. The metabolic reactions mainly included deglycosylation, dehydration, hydrogenation, methylation, acetylation, glucuronidation, and sulfation. Network pharmacology analysis showed that the key components quercetin, pinoresinol diglucoside, and 5-O-trans-p-coumaroyl quinic acid butyl ester mainly acted on the core targets PTGS2, HRAS, RELA, PRKCA, and BCL2 targets and through the PI3K-Akt signaling pathway, endocrine resistance, and MAPK signaling pathway to exert a hypoglycemic effect. Likewise, molecular docking results showed that the three potential active ingredients had good binding effects on the five key targets. CONCLUSION: This study provides a basis for elucidating the pharmacodynamic substance basis of AA against T2DM and further exploring the mechanism of action.


Asunto(s)
Actinidia , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Farmacología en Red , Extractos Vegetales , Hojas de la Planta , Actinidia/química , Hojas de la Planta/química , Animales , Ratones , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Masculino , Cromatografía Líquida de Alta Presión/métodos , Transducción de Señal/efectos de los fármacos
5.
Nutr Res Pract ; 18(1): 88-97, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352218

RESUMEN

BACKGROUND/OBJECTIVES: Mitigating insulin resistance and hyperglycemia is associated with a decreased risk of diabetic complications. The effect of Daraesoon (shoot of hardy kiwi, Actinidia arguta) on hyperglycemia was investigated using a type 2 diabetes animal model. MATERIALS/METHODS: Seven-week-old db/db mice were fed either an AIN-93G diet or a diet containing 0.4% of a 70% ethanol extract of Daraesoon, whereas db/+ mice were fed the AIN-93G diet for 7 weeks. RESULTS: Consumption of Daraesoon significantly reduced serum glucose and blood glycated hemoglobin levels, along with homeostasis model assessment for insulin resistance in db/db mice. Conversely, Daraesoon elevated the serum adiponectin levels compared to the db/db control group. Furthermore, Daraesoon significantly decreased both serum and hepatic triglyceride levels, as well as serum total cholesterol levels. Additionally, consumption of Daraesoon resulted in decreased hepatic tumor necrosis factor-α and monocyte chemoattractant protein-1 expression. CONCLUSIONS: These results suggest that hypoglycemic effect of Daraesoon is mediated through the improvement of insulin resistance and the downregulation of pro-inflammatory cytokine expression in db/db mice.

6.
Mol Hortic ; 4(1): 4, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38317251

RESUMEN

Actinidia arguta, known as hardy kiwifruit, is a widely cultivated species with distinct botanical characteristics such as small and smooth-fruited, rich in beneficial nutrients, rapid softening and tolerant to extremely low temperatures. It contains the most diverse ploidy types, including diploid, tetraploid, hexaploid, octoploid, and decaploid. Here we report a haplotype-resolved tetraploid genome (A. arguta cv. 'Longcheng No.2') containing four haplotypes, each with 40,859, 41,377, 39,833 and 39,222 protein-coding genes. We described the phased genome structure, synteny, and evolutionary analyses to identify and date possible WGD events. Ks calculations for both allelic and paralogous genes pairs throughout the assembled haplotypic individuals showed its tetraploidization is estimated to have formed ~ 1.03 Mya following Ad-α event occurred ~ 18.7 Mya. Detailed annotations of NBS-LRRs or CBFs highlight the importance of genetic variations coming about after polyploidization in underpinning ability of immune responses or environmental adaptability. WGCNA analysis of postharvest quality indicators in combination with transcriptome revealed several transcription factors were involved in regulating ripening kiwi berry texture. Taking together, the assembly of an A. arguta tetraploid genome provides valuable resources in deciphering complex genome structure and facilitating functional genomics studies and genetic improvement for kiwifruit and other crops.

7.
Oecologia ; 204(3): 505-515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265600

RESUMEN

Megafauna are important seed dispersers because they can disperse large quantities of seeds over long distances. In Hokkaido, Japan, the largest terrestrial animal is the brown bear (Ursus arctos) and other megafauna seed dispersers are lacking. Thus, brown bears are expected to have an important function as seed dispersers in Hokkaido. In this study, we, for the first time, evaluated the seed dispersal function of brown bears in Hokkaido using three fleshy-fruited trees and studied: (1) gut passage time (GPT) in feeding experiments, (2) seed dispersal distance using tracking data of wild bears, and (3) the effect of gut passage and pulp removal on germination rate. Most seeds were defecated intact, and less than 6% were broken. The average GPT without pulp was 3 h and 56 min to 6 h and 13 min, depending on the plant and trial. Each plant's average simulated seed dispersal distance was 202-512 m. The dispersal distance of Actinidia arguta seeds with pulp was significantly longer than those without pulp because of their longer GPT. The germination rate of defecated seeds without pulp was 19-51%, depending on the plant, and was significantly higher or not different comparing with that of seeds with pulp. We concluded that brown bears in Hokkaido are effective seed dispersers. In managing brown bears in Hokkaido, such ecological functions should be considered along with conserving the bear population and reducing human-bear conflicts.


Asunto(s)
Dispersión de Semillas , Ursidae , Animales , Humanos , Japón , Semillas , Frutas , Plantas , Germinación , Conducta Alimentaria
8.
Life (Basel) ; 14(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276278

RESUMEN

The seasonal changes in environmental conditions can alter the growth states of host plants, thereby affecting the living environment of endophytes and forming different endophytic communities. This study employs Illumina MiSeq next-generation sequencing to analyze the 16SrRNA and ITS rDNA of endophytes in 24 samples of Actinidia arguta stem tissues across different seasons. The results revealed a high richness and diversity of endophytes in Actinidia arguta, with significant seasonal variations in microbial community richness. This study identified 897 genera across 36 phyla for bacteria and 251 genera across 8 phyla for fungi. Notably, 69 bacterial genera and 19 fungal genera significantly contributed to the differences in community structure across seasons. A distinctive feature of coexistence in the endophytic community, both specific and conservative across different seasons, was observed. The bacterial community in winter demonstrated significantly higher richness and diversity compared to the other seasons. Environmental factors likely influence the optimal timing for endophyte colonization. Solar radiation, temperature, precipitation, and relative humidity significantly impact the diversity of endophytic bacteria and fungi. In addition, seasonal variations show significant differences in the nutritional modes of fungal endophytes and the degradation, ligninolysis, and ureolysis functions of bacterial endophytes. This study elucidates the potential role of endophytes in assisting Actinidia arguta in adapting to seasonal changes and provides a theoretical basis for further exploration of functional microbial strains.

9.
Mol Biol Rep ; 51(1): 112, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227080

RESUMEN

BACKGROUND: Light is essential for kiwifruit development, in which photoresponse factors contributes greatly to the quality formation. 'Light sensitive hypocotyls, also known as light-dependent short hypocotyls' (LSH) gene family can participate in fruit development as photoresponse factor. However, the key LSH gene that determine kiwifruit development remains unclear. This study aim to screen and identify the key gene AaLSH9 in A. arguta. MATERIALS AND METHODS: Genome-wide identification of the LSH gene family was used to analyse LSH genes in kiwifruit. Homologous cloning was used to confirm the sequence of candidate LSH genes. qRT-PCR and cluster analysis of expression pattern were used to screen the key AaLSH9 gene. Subcellular localization of AaLSH9 in tobacco leaves and overexpression of AaLSH9 in Arabidopsis thaliana hy5 mutant plants were used to define the acting place in cell and identify molecular function, respectively. RESULTS: We identified 15 LSH genes, which were divided into two sub-families namely A and B. Domain analysis of A and B showed that they contained different domain organizations, which possibly played key roles in the evolution process. Three LSH genes, AaLSH2, AaLSH9, and AaLSH11, were successfully isolated from Actinidia arguta. The expression pattern and cluster analysis of these three AaLSH genes suggested AaLSH9 might be a key photoresponse gene participating in fruit development in A. arguta. Subcellular localization showed AaLSH9 protein was located in the nucleus. The overexpression of AaLSH9 gene in Arabidopsis thaliana hy5 mutant plants partially complemented the long hypocotyls of hy5 mutant, implying AaLSH9 played a key role as photoresponse factor in cells. In addition, the seed coat color of A. thaliana over-expressing AaLSH9 became lighter than the wide type A.thaliana. Finally, AaCOP1 was confirmed as photoresponse factor to participate in developmental process by stable transgenic A. thaliana. CONCLUSIONS: AaLSH9 can be involved in kiwifruit (A. arguta) development as key photoresponse factor. Our results not only identified the photoresponse factors AaLSH9 and AaCOP1 but also provided insights into their key role in fruit quality improvement in the process of light response.


Asunto(s)
Actinidia , Arabidopsis , Actinidia/genética , Arabidopsis/genética , Análisis por Conglomerados , Frutas/genética , Hipocótilo
10.
Molecules ; 28(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067549

RESUMEN

Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant's potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization.


Asunto(s)
Actinidia , Alcaloides , Actinidia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Polisacáridos , Vitaminas , Flavonoides , Fenoles , Fitoquímicos/farmacología , Etnofarmacología
11.
BMC Plant Biol ; 23(1): 531, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37914989

RESUMEN

Bleeding is as particularly a serious phenomenon in Actinidia arguta and has important effects on this plant's growth and development. Here we used A. arguta to study the effects of bleeding on the growth and development of leaves and fruits after a bleeding episode. We detect and analyze physiological indices of leaves and fruit after bleeding. The result revealed that the relative electrical conductivity and malondialdehyde (MDA) of leaves increased in treatment. Nitro blue tetrazolium chloride (NBT) and 3,3-diaminobenzidine (DAB) staining revealed the accumulation of reactive oxygen species (ROS) in leaves after bleeding. The chlorophyll content and photosynthetic parameter of plants were also decreased. In fruits, pulp and seed water content decreased after the damage, as did fruit vitamin C (Vc), soluble sugar content, and soluble solids content (SSC); the titratable acid content did not change significantly. We therefore conclude that bleeding affects the physiological indices of A. arguta. Our study provides a theoretical basis for understanding the physiological changes of A. arguta after bleeding episodes and laying a timely foundation for advancing research on A. arguta bleeding and long-term field studies should be executed in order to gain insights into underlying mechanisms.


Asunto(s)
Actinidia , Frutas , Semillas , Ácido Ascórbico
12.
Molecules ; 28(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005281

RESUMEN

Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.


Asunto(s)
Actinidia , Compuestos Orgánicos Volátiles , Cromatografía Líquida de Alta Presión , Frutas/química , Actinidia/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Movilidad Iónica , Compuestos Orgánicos Volátiles/análisis , Aldehídos/análisis , Odorantes/análisis , Ésteres/análisis , Azúcares/análisis
13.
Nutrients ; 15(19)2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37836402

RESUMEN

Actinidia arguta leaves (AAL) are an excellent source of bioactive components for the food industry and possess many functional properties. However, the hypoglycemic effect and mechanism of AAL remain unclear. The aim of this work was to investigate the potential hypoglycemic effect of AAL and explore its possible mechanism using 16S rRNA sequencing and serum metabolomics in diabetic mice induced by high-fat feeding in combination with streptozotocin injection. A total of 25 flavonoids from AAL were isolated and characterized, and the contents of the extract from the AAL ranged from 0.14 mg/g DW to 8.97 mg/g DW. The compound quercetin (2) had the highest content of 8.97 ± 0.09 mg/g DW, and the compound kaempferol-3-O-(2'-O-D-glucopyl)-ß-D-rutinoside (12) had the lowest content of 0.14 ± 0.01 mg/g DW. In vivo experimental studies showed that AAL reduced blood glucose and cholesterol levels, improved insulin sensitivity, and ameliorated oxidative stress and liver and kidney pathological damage. In addition, gut microbiota analysis found that AAL significantly reduced the F/B ratio, enriched the beneficial bacteria Bacteroides and Bifidobacterium, and inhibited the harmful bacteria Lactobacillus and Desulfovibrio, thereby playing an active role in intestinal imbalance. In addition, metabolomics analysis showed that AAL could improve amino acid metabolism and arachidonic acid metabolism, thereby exerting a hypoglycemic effect. This study confirmed that AAL can alleviate type 2 diabetes mellitus (T2DM) by regulating intestinal flora and interfering with related metabolic pathways, providing a scientific basis for its use as a dietary supplement and for further exploration of the mechanism of AAL against T2DM.


Asunto(s)
Actinidia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Ratones , Hipoglucemiantes/farmacología , ARN Ribosómico 16S , Metabolómica
14.
Front Plant Sci ; 14: 1280970, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37877082

RESUMEN

Anthocyanin is the main component of pigment in red-fleshed kiwifruit. 'Jinhongguan' is a new cultivar of Actinidia arguta with red peel and flesh after harvest. However, the specific types of anthocyanin in the 'Jinhongguan' fruit and its biosynthesis pathways remain largely unknown. Here, the total anthocyanin content in the fruit color conversion process was determined. The results showed that total anthocyanin content increased with the deepening color of the peel and flesh. To identify the genes related to anthocyanin biosynthesis and the types of anthocyanins in the 'Jinhongguan' fruit, a combined analysis of transcriptome and anthocyanin-targeted metabolome was carried out. A total of 5751 common differentially expressed genes (DEGs) at different stages of peel and flesh were identified, of which 2767 were common up-DEGs and 2976 were common down-DEGs. KEGG and GO enrichment analyses showed that the common up-DEGs were significantly enriched in anthocyanin synthesis-related pathways, suggesting some up-DEGs are involved in anthocyanin biosynthesis. In total, 29 metabolites were detected in the flesh by anthocyanin-targeted metabolome. Among these, nine were differential accumulation metabolites (DAMs) in comparison to red flesh vs green flesh. Six DAMs were up-regulated, with five of them were cyanidins. The content of cyanidin-3-O-galactoside was much higher than that of other DAMs, making it the main pigment in 'Jinhongguan'. Moreover, a total of 36 anthocyanin synthesis-related structural genes, 27 MYB transcription factors (TFs), 37 bHLH TFs and 9 WDR TFs were screened from the common DEGs. Correlation analysis of transcriptome and metabolome revealed that 9 structural genes, 6 MYB TFs, 6 bHLH TFs and 1 WDR TF were significantly associated with cyanidin-3-O-galactoside. Further, qRT-PCR analysis demonstrated that structural genes (AaPAL3, Aa4CL3, AaCHS2/3/8/9/11, AaDFR1/2, AaANR1, UFGT3a and UFGT6b) and TFs (MYB108, bHLH30, bHLH94-1 and WD43) play important roles in cyanidin biosynthesis. Overall, this study identified cyanidin-3-O-galactoside as the main anthocyanin type and revealed key candidate genes of red coloration of post-harvest fruit in Actinidia arguta. These findings provided new insights into the color formation mechanism of post-harvest fruit and offered a theoretical basis for color regulation in kiwifruit.

15.
Mol Breed ; 43(10): 75, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37868140

RESUMEN

In dioecious crops such as Actinidia arguta (kiwiberries), some of the main challenges when breeding for fruit characteristics are the selection of potential male parents and the long juvenile period. Currently, breeding values of male parents are estimated through progeny tests, which makes the breeding of new kiwiberry cultivars time-consuming and costly. The application of best linear unbiased prediction (BLUP) would allow direct estimation of sex-related traits and speed up kiwiberry breeding. In this study, we used a linear mixed model approach to estimate narrow sense heritability for one vine-related trait and five fruit-related traits for two incomplete factorial crossing designs. We obtained BLUPs for all genotypes, taking into consideration whether the relationship was pedigree-based or marker-based. Owing to the high cost of genome sequencing, it is important to understand the effects of different sources of relationship matrices on estimating breeding values across a breeding population. Because of the increasing implementation of genomic selection in crop breeding, we compared the effects of incorporating different sources of information in building relationship matrices and ploidy levels on the accuracy of BLUPs' heritability and predictive ability. As kiwiberries are autotetraploids, multivalent chromosome formation and occasionally double reduction can occur during meiosis, and this can affect the accuracy of prediction. This study innovates the breeding programme of autotetraploid kiwiberries. We demonstrate that the accuracy of BLUPs of male siblings, without phenotypic observations, strongly improved when a tetraploid marker-based relationship matrix was used rather than parental BLUPs and female siblings with phenotypic observations. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01419-8.

16.
Foods ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761054

RESUMEN

Actinidia arguta wine is a low-alcoholic beverage brewed from A. arguta with a unique flavor and sweet taste. In this study, the basic physicochemical indicators, color, organic acid, and volatile aroma components of wines made from the A. arguta varieties 'Kuilv', 'Fenglv', 'Jialv', 'Wanlv', 'Xinlv', 'Pinglv', 'Lvbao', 'Cuiyu', 'Tianxinbao', and 'Longcheng No.2' were determined, and a sensory evaluation was performed. The findings show that 'Tianxinbao' produced the driest extract (49.59 g/L), 'Kuilv' produced the most Vitamin C (913.46 mg/L) and total phenols (816.10 mg/L), 'Jialv' produced the most total flavonoids (477.12 mg/L), and 'Cuiyu' produced the most tannins (4.63 g/L). We analyzed the color of the A. arguta wines based on CIEL*a*b* parameters and found that the 'Kuilv' and 'Longcheng No.2' wines had the largest L* value (31.65), the 'Pinglv' wines had the greatest a* value (2.88), and the 'Kuilv' wines had the largest b* value (5.08) and C*ab value (5.66) of the ten samples. A total of eight organic acids were tested in ten samples via high-performance liquid chromatography (HPLC), and we found that there were marked differences in the organic acid contents in different samples (p < 0.05). The main organic acids were citric acid, quinic acid, and malic acid. The aroma description of a wine is one of the keys to its quality. A total of 51 volatile compounds were identified and characterized in ten samples with headspace gas chromatography-ion mobility spectrometry, including 24 esters, 12 alcohols, 9 aldehydes, 3 aldehydes, 2 terpenes, and 1 acid, with the highest total volatile compound content in 'Fenglv'. There were no significant differences in the types of volatile compounds, but there were significant differences in the contents (p < 0.05). An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) showed that ethyl butanoate, ethyl pentanoate, ethyl crotonate, ethyl isobutyrate, butyl butanoate, 2-methylbutanal, ethyl isovalerate, and ethyl hexanoate were the main odorant markers responsible for flavor differences between all the A. arguta wines. Sensory evaluation is the most subjective and effective way for consumers to judge A. arguta wine quality. A quantitative descriptive analysis (QDA) of the aroma profiles of ten grapes revealed that the 'fruity' and 'floral' descriptors are the main and most essential parts of the overall flavor of A. arguta wines. 'Tianxinbao' had the highest total aroma score. The flavor and quality of A. arguta wines greatly depend on the type and quality of the A. arguta raw material. Therefore, high-quality raw materials can improve the quality of A. arguta wines. The results of the study provide a theoretical basis for improving the quality of A. arguta wines and demonstrate the application prospects of HS-GC-IMS in detecting A. arguta wine flavors.

17.
Antioxidants (Basel) ; 12(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37627491

RESUMEN

Actinidia arguta leaves have gained notoriety over the past years due to their rich bioactive composition with human pro-healthy effects, particularly in relation to antioxidants. Nevertheless, antioxidants are well known for their chemical instability, making it necessary to develop suitable delivery systems, such as microparticles, to provide protection and ensure a controlled release. The aim of this work was to produce polymeric particles of A. arguta leaves extract by spray-drying that may improve the oral mucositis condition. Microparticles were characterized by size, shape, antioxidant/antiradical activities, swelling capacity, moisture content, and effect on oral cells (TR146 and HSC-3) viability, with the aim to assess their potential application in this oral condition. The results attested the microparticles' spherical morphology and production yields of 41.43% and 36.40%, respectively, for empty and A. arguta leaves extract microparticles. The A. arguta leaves extract microparticles obtained the highest phenolic content (19.29 mg GAE/g) and antioxidant/antiradical activities (FRAP = 81.72 µmol FSE/g; DPPH = 4.90 mg TE/g), being perceived as an increase in moisture content and swelling capacity. No differences were observed between empty and loaded microparticles through FTIR analysis. Furthermore, the exposure to HSC-3 and TR146 did not lead to a viability decrease, attesting their safety for oral administration. Overall, these results highlight the significant potential of A. arguta leaves extract microparticles for applications in the pharmaceutical and nutraceutical industries.

18.
Front Plant Sci ; 14: 1204267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583592

RESUMEN

The all-red A. arguta (Actinidia arguta) is an anthocyanin-rich and excellent hardy fruit. Many studies have focused on the green-fleshed A. arguta, and fewer studies have been conducted on the all-red A. arguta. Here we reported a regeneration and Agrobacterium-mediated transformation protocol by using leaves of all-red A. arguta as explants. Aseptic seedling leaves of A. arguta were used as callus-inducing materials. MS medium supplemented with 0.3 mg·L-1 2,4-D and 1.0 mg·L-1 BA was the optimal medium for callus induction of leaves, and medium supplemented with 3 mg·L-1 tZ and 0.5 mg·L-1 IAA was optimal for adventitious shoot regeneration. The best proliferation medium for adventitious buds was MS + 1.0 mg·L-1 BA + 0.3 mg·L-1 NAA. The best rooting medium was 1/2MS + 0.7 mg·L-1 IBA with a 100% rooting rate. For the red flesh hardy kiwi variety 'Purpurna Saduwa' (A. arguta var. purpurea), leaves are receptors for Agrobacterium (EHA105)-mediated transformation. The orthogonal experiment was used for the optimization of each genetic transformation parameter and the genetic transformation of the leaves was 21% under optimal conditions. Our study provides technical parameters for applying genetic resources and molecular breeding of kiwifruit with red flesh.

19.
Food Res Int ; 163: 112228, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596158

RESUMEN

Actinidia arguta, an edible berry plant with high nutritional values, has been widely used in Asian countries as a food and traditional medicinal herb. The well-recognized health-promoting properties of A. arguta were associated with its bioactive components in its different botanical parts. To rapidly screen and identify chemical components and simultaneously determine the potential metabolites from different parts of A. arguta, UPLC-Q-TOF-MSE coupled with UNIFI platform and multivariate statistical analysis approach was established in this study. As a result, a total of 107 components were identified from the four different parts of A. arguta, in which 31 characteristic chemical markers were discovered among them, including 12, 8, 6, and 5 compounds from the fruits, leaves, roots, and stems, respectively. These results suggested that the combination of UPLC-Q-TOF-MSE and metabolomic analysis is a powerful method to rapidly screen characteristic markers for the quality control of A. arguta.


Asunto(s)
Actinidia , Plantas Medicinales , Actinidia/química , Metabolómica , Raíces de Plantas/química , Frutas/química
20.
Food Chem ; 411: 135485, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682166

RESUMEN

The rapid softening of hardy kiwifruit (Actinidia arguta) fruit significantly reduces its marketing potential. Therefore, the effect of 1-methylcyclopropene (1-MCP) on the softening of A. arguta fruit was investigated. Results indicated that A. arguta fruit treated with 1-MCP maintained a higher level of firmness, titratable acidity, ascorbic acid, total phenolics, and flavonoids content, relative to non-treated fruit. Fruit treated with 1-MCP and placed in long-term cold storage had higher sensory scores, as determined by a taste panel and supported by electronic nose and tongue data. Notably, 1-MCP delayed the degradation of cell wall components, including pectin, cellulose, and hemicellulose, by reducing the activity of cell-wall-modifying enzymes. In addition, 1-MCP reduced the activity of carbohydrate metabolism-related enzymes, resulting in fruit with higher levels of starch and sucrose and lower levels of glucose, fructose and sorbitol. Collectively, these results indicate that 1-MCP can be used to delay the softening of A. arguta fruit and extend its storage and shelf life.


Asunto(s)
Actinidia , Frutas , Humanos , Frutas/metabolismo , Tiempo de Tratamiento , Metabolismo de los Hidratos de Carbono , Pared Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA